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Abstract: 

 

In the past dozen years, most states have adopted some form of a Renewable Portfolio Standard (RPS) 

mandating that utilities generate a larger fraction of energy from renewable sources. Although an RPS is 

quite effective at replacing relatively dirty generation from old coal-consuming plants with cleaner 

energy, it can also be quite costly. The immediate partial equilibrium effect of utilizing cleaner energy is 

an increase in energy prices that reduces a state’s output (especially from energy-intensive industries). 

The larger general equilibrium effects would be broader price changes and more substitution but might 

also include the loss of business to states without an RPS, which might lead to an interesting and 

increasingly observed phenomenon: coalitions of states filing suit against the Environmental Protection 

Agency (EPA) for not regulating the emissions of fossil-fired power plants more aggressively. To explain 

the RPS adoption decision that could lead to this phenomenon, we develop a theoretical model that 

captures the partial equilibrium effects of an RPS in terms of lost income from the state’s industries and 

attributes the benefits of an RPS to environmentally conscientious voters. We find evidence to support 

this model in an analysis of data on state voting patterns, state energy regulations, a battery of electric 

power sector details, and the effects of energy prices on state GDP (by industry) from 1997-2010.   
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I. Introduction 

 

Federal policymakers in the United States have had climate change on their radar for decades but have 

continually delayed taking sweeping action because the politics have been poisoned, the uncertainties 

undermining, the damages distant, and the costs colossal. Revolutionary reductions in greenhouse gas 

emissions would require a radical revision of environmental /energy policy from the energy efficiency of 

heating/cooling buildings to lighting and from the fossil fuel consumed in transportation to electric 

power generation. Dissatisfied with federal inaction, States dominated by greener Democrats have 

taken matters into their own hands. To reduce their own carbon footprint, many Blue States (as well as 

a handful of Red States) have pursued progressive policies such as setting an RPS (Renewable Portfolio 

Standard) that require each electric power utility to generate a minimum fraction of their energy from 

renewable sources. Observers generally consider an RPS to be both quite effective at elevating cleaner 

energy but also quite costly because the generation capital for cleaner energy is much more expensive.  

 

In a world absent of interstate externalities, federalists would be rather satisfied with the outcome of 

greener states securing greater environmental quality via higher environmental standards. While these 

greener states are free to adopt more stringent environmental policies than those promulgated by the 

Environmental Protection Agency (EPA), we increasingly observe coalitions of states (usually Blue States) 

filing suit against the EPA to compel the federal government to further regulate the emissions of electric 

power utilities, which tends to decrease the cost-effectiveness of coal-fired generation in favor of 

natural gas and renewables. Idealists have ample reasons for supporting these lawsuits, which attempt 

to supplant a second-best solution (setting energy policy state-by-state) with a first-best solution 

(centralized policy that internalizes externalities with limited leakages). Although any such lawsuit 

against the EPA necessarily invokes direct harm from an interstate environmental externality, a cynical 

economist could suggest an interesting alternative explanation.  

 

In an economy where states compete for economic development opportunities by landing firms that are 

deciding where to site their production, the energy price differential induced by an RPS could be pivotal. 

If economic development in energy-intensive industries declines in Blue States relative to Red States due 

to their electricity rising under an RPS, then Blue States may well sue EPA to compel Red States to 

further regulate their energy utilities in order to level the playing field. A general equilibrium model, 

sufficiently rich in detail to capture this business-stealing effect, might produce some interesting 

implications: the apparent polarization across states could become starker over time as energy-intensive 

industries take an increasingly dominant role in the economy of a state without an RPS, increased 

regulatory activity in Blue States would inadvertently decrease regulatory activity in Red States, and 

federal inaction could even be prolonged despite the present precipice upon which national energy 

policy teeters.  

 

Developing a general equilibrium model that is capable of accommodating such a grand scale of RPS 

effects is just beyond the scope of this paper. Instead, we focus on the more immediate characterization 

of the partial equilibrium costs of an RPS and explaining the decision to pass an RPS. By applying a 

revealed preference argument to a state legislature’s median voter, we can infer benefits of an RPS to 
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environmentally conscientious voters. Our theoretical model captures the partial equilibrium effects of 

an RPS in terms of lost income from the state’s industries and attributes the RPS’s benefits to political 

observables. We find evidence to support this model in an analysis of data on state voting patterns, 

state energy regulations, a battery of electric power sector details, and the effects of energy prices on 

state GDP (by industry) from 1997-2010. 

 

From this research, we learn about the determinants of an RPS mandate – both its costs and its benefits. 

In particular, we find that centrists opposed mandating renewables in 1997 (i.e. 1 < 0), that leftists in 

1997 highly valued an RPS in opposition to right-wingers (i.e. 3 > 0), that people from all political stripes 

seem to increasingly value renewable mandates over time (i.e. 2 > 0), and that conservatives have 

warmed up to renewable mandates over time while liberals have cooled off a bit. Most importantly, 

these trends are convergent so that we may actually be approaching a consensus. Further inspection 

suggests that red states are increasingly implementing RPS mandates, despite considerable polarization 

and ongoing opposition within these red states.  

 

There is already a growing literature on RPS mandates. Chen, Wiser, and Bolinger (2007) attempt a 

broad characterization of costs and benefits of RPS mandates; our study engages in a somewhat similar 

endeavor but we are more focused on producing benefits estimates grounded in rigorous inference 

from data sets that can support identification with enough innovative groundwork. Prasad and Munch 

(2012) estimate the effect of an RPS mandate on carbon emissions but not the actual decision to pass a 

mandate, which is assumed to be exogenous. Lyon and Yin (2009) is closest to this study but it is a truly 

reduced-form analysis of whether an RPS is adopted instead of a structural modeling of the magnitude 

of the RPS mandate; moreover Lyon and Yin (2009) is an older study and hence could not take 

advantage of newly available data from this rapidly evolving area.  

 

In addition to answering research questions about RPS mandates, this study also makes a 

methodological contribution. The estimation of a system of nonlinear equations derived from structural 

model by Bayesian MCMC that is robust to strong sample size limitations is not an innovation unique to 

this study (e.g. see examples from Gelman et al. 2004); however, the particularities of this setup are a 

novel contribution. More generally, this paper continues the effort of work like Delarue et al. (2011) and 

Sue Wing (2006) to insert more realistic technical detail in economic models (both empirical and 

theoretical) of energy markets. 

 

The layout for the remainder of the paper is as follows. Section II develops the theoretical model 

motivating our empirical design, Section III describes the data that we have gathered to identify key 

elements of the theoretical model, and Section IV details the econometric methodology for identifying 

parameters of the structural model from the data. Section V presents results and Section VI concludes.  
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II. Theoretical Model 

 

a. State Governments  

 

The political preferences of voters are defined along a spectrum (S  [0,1]) that describes how they 

trade-off their valuation of the non-market benefits of more generation from renewables against a 

hypothetical RPS’ costs (in terms of decreased per-capita income). Legislators, at both the state and 

national levels, are assumed to have preferences that reasonably represent their constituents. Given 

that state legislatures ultimately make their decisions by majority rule, the median voter theorem 

applies: the legislature will try to pass the RPS most favored by the median voter.2 However, because 

the actual legislative process can get exceedingly messy (e.g. agenda-setting and parliamentary rules 

such as the Senate’s filibuster), the bargaining costs of legislative deal-making may be too great to pass 

an RPS even when it is perceived by the median voter as net beneficial. Hence, the state legislature will 

pass an RPS that mandates a growth rate () in the share of generation from renewable sources, if the 

benefits exceed the sum of the variable costs to the economy (increasing in ) and the fixed bargaining 

costs:  
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Where 1 is the valuation of a true centrist, 2 describes how the centrist’s valuation increases over 

time (e.g. because people are becoming increasingly alarmed about climate change), 3 describes how 

that valuation changes along the political spectrum (as measured by the score S, which is centered on 

0.5), 4 describes how the partisan valuation is changing over time, 3it is a random utility term that 

captures costs (e.g. a period of acrimony that raises bargaining costs) less idiosyncratic differences in 

benefits valuation (e.g. due to deviations in the representativeness of the legislators), GDPijt is the 

revenue earned by industry j in state i at time t (so that the sum across all industries is the state’s 

income), POPit is the population of state i,  captures the fixed cost (i.e. not varying with ) associated 

with legislative deal-making (which is increasing in the polarization of political preferences), 

the  operator is a Cartesian product (not a Kronecker product), and  is an operator representing the 

difference in GDP resulting from increases in energy prices resulting from an RPS mandate to increase  

by a factor of (1+). 

 

The first-order condition implicitly describes the value of  that equates marginal benefit to cost: 

 

                                                           
2
 Naturally, if the median voter perceives the costs as dominating the benefits even at the lowest levels of , then 

the legislature would even take up an RPS in that session. 
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Where PE is the price of electricity, that channels all of the economic effects of an RPS mandating . In a 

general equilibrium framework, changes in energy prices would cascade to other prices throughout the 

economy. Hence, this model is a form of partial equilibrium where only adjusts to the shock of the 

legislature passing an RPS that mandates that renewables’ share of generation grows at . 

 

b. Electric Power Industry 

 

Each state is served by a single electric power utility that produces electricity from renewable sources 

(Rit) and electricity from non-renewables (Nit). Each type of generation (i.e. Rit and Nit) cannot exceed its 

respective capacity constraint: the stock of capital that generates from renewable sources (KRit) and the 

stock of capital that generates from non-renewable sources (KNit). Because this electric utility is a 

monopolist, it is subject to a variety of Public Utilities Commission (PUC) regulations: careful setting of 

rates (i.e. the price of electricity, PEit) according to a standard formula, an obligation to serve the amount 

of electric power demanded (Eit) given that regulated price, and direct oversight of capital investment. 

PUC oversight of capital investment requires that the utility meets the RPS requirements (internalizing 

some externalities), that the utility treats Eit+1 as exogenous to planning decisions (to keep the monopoly 

from exercising its market power); and that the utility invests in technologies with the lowest marginal 

cost (so that it doesn’t game the PUC’s rate making formula).3  

 

In the short-run (i.e. 1 year), the utility dispatches KRit and KNit to generate amounts of Rit and Nit that 

minimize operating costs (ft for fueled operating costs and ot for other) subject to the technology and 

obligation to serve constraints, which nicely conforms to a simple linear programming problem: 

 

   
       

                     

           

          
          

 

 

Given 0  ot < ft, the solution to this operations problem is to first utilize all of the renewable capacity 

because it can generate electricity at a lower operating cost than production of electric power from non-

renewable sources that must purchase a fuel (coal, gas, oil, or uranium) to be consumed; the remaining 

balance of Eit is then generated using the non-renewable production technology.4  

                                                           
3
 These simplifying assumptions are not far from reality. PUCs require every utility to regularly submit an 

Integrated Resource Plan (IRP) to ensure that RPS requirements are met, that the utility is not padding its assets 
with investment in gold-plated generation assets, and that demand is treated as an exogenous load forecast.  
4
 In theory, we could include availability shocks to the renewable and non-renewable capacity; both can become 

unavailable when machinery breaks down, non-renewables can become unavailable if there is a fuel disruption, 
and renewables are notorious for becoming unavailable (e.g. the wind is not blowing enough). However, although 
this inclusion might provide more realistic detail about the relative merits of the renewable versus non-renewable 
technology, it does not affect our results here.  
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Under the influence of PUC regulation, the planning decision will result in adding enough capacity to 

ensure that the utility meets its obligation to serve Eit+1. In the real world, utilities that are short of their 

obligation to serve simply purchase from the grid from utilities that are long – this happens all of the 

time as operations decisions are made every few minutes; however, in this model there is no 

uncertainty so there is no risk of a utility being short (or long). Hence, this model needs no grid (demand 

is entirely supplied by the state’s monopolist, i.e. Rit + Nit = Eit) and utilities will not have any excess 

capacity (i.e. Nit = KNit). The only remaining role for planning is to decide how much of that additional 

capacity (needed to meet future demand) should be invested in KRit versus KNit. Under the influence of 

PUC regulation, the utility will decide on its investment (INit and IRit) so as to minimize the marginal cost 

of investment (unless it needs to meet an RPS requirement). The marginal cost of investment is 

implicitly contained within the following laws of motion on the capital stocks: 

 

       (   )       (       ) 
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Where  is depreciation, KRMaxi is the maximum amount of renewable capacity that it technically feasible 

for state i (i.e. it’s the renewable potential for state i), Ct is a measure that captures the technologic al 

improvements that have brought down the cost of renewable generation capital over the past decade, 

the g()’s are capital adjustment cost functions (akin to those that are fairly common in macroeconomics 

for slowing down capital accumulation), and the investment cost parameters are the s.  

 

Rather than directly specify these capital adjustment costs, it is more convenient to specify the amount 

of investment required to grow the capital stock at time t+1 to a particular level from a given level at 

time t: 
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The N and R0 describe the constant component of the marginal cost of increasing capacity. The 

remainder of the renewable investment cost function is nonlinear to capture the fact that the marginal 

cost of investment should increase as one approaches a state’s maximum potential. Hence, R0 captures 

the generic cost of the equipment invariant of site (e.g. the solar panels) and R1 captures how that cost 

increases as utilities resort to less efficient sites (e.g. more cloud cover means less solar generation per 

panel). Note that, even without an RPS, utilities would have some stock of renewable generation that 

grows over time (e.g. conventional hydropower plus some recent modest increases in select low-cost 

opportunities to deploy renewables); this stylized fact is captured by some units of renewable capacity 

being cheaper than non-renewable units (until increasing marginal costs of renewables overtakes the 

constant marginal cost of non-renewables) and that more units will become cheaper as the marginal 

cost of renewable (equipment) falls over time.  
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The rates, PEit, for electric power utilities are set according to a standard formula; the rates are set so 

that the utility earns enough revenue to cover its operating costs (Oit) and get a fair rate of return on its 

capital investments: 

 

                  

 

Where the left-hand side is the revenue requirement, V is the value of the utility’s capital stocks, and r is 

a “fair” rate of return – the utility earns a revenue of rV (after covering operating costs) and then could 

conceivably sell the generation capital assets for V to net a return of 1+r on its investment of V.5  The 

evaluation of the investment cost functions at the current stock with no initial capital yields the value of 

the utility’s assets as measured by their replacement costs:  

 

      (      )    (      ) 

 

Simple algebra (including dividing the rate setting equation by Eit and substituting in it for the share of 

electric power generated from renewables in state i during year t) yields: 

 

             (     )    [  (     )                 [   (  
      

      
)] [

 

   
]] 

 

The change in the price from the state legislature imposing an RPS at time t to grow it by a rate of  can 

be found by substituting in (1+)it into the previous equation, and differentiating with respect to : 
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c. Other Industries Comprising the State’s Economy 

 

In order to keep the model tractable, each of the J industries are assumed to produce their output from 

energy and a composite of all other goods (Z) inputting into a Cobb-Douglas technology with input-

output elasticities of  and  (respectively). From the well-known solution to this profit maximization 

problem, we can substitute the factor demands into the production function  and subsequently into 

revenue to describe revenue as a function of the price of electricity, other prices (Pj and PZ, which are 

held fixed in this partial equilibrium analysis) and technology parameters (including Ajt): 

 

        
  

 
        

 

  

        
 

  

        
   

   

         

   

        
 

 
        

 

                                                           
5
 PUCs set electricity rates so that the “fair” rate of return at 8% – observed values exhibit some variation around 

that 8% due to the realization of (unmitigated) shocks born by the utility. 
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III. Data 

 

Table 1 presents a tabular overview of the data that we have assembled for this project. In the 

remainder of this section, we step through that table to describe each major source. 

 

a. RPS Data from DSIRE 

 

An RPS results from an act of legislation. Due to the very nature of the legislative process, the details of 

each RPS can be quite different from those in other states. For instance, some states may not count 

energy generated from hydrogen (an energy carrier) unless that hydrogen was itself produced from 

renewable energy (instead of natural gas and steam, currently the cheapest way to produce hydrogen) 

while other states have specific carve-outs for a minimum fraction that must come from hydrogen; 

some states do not even count the existing stock of conventional hydropower but do count new (small-

scale) hydropower. Fortunately, quantitative analysis has been facilitated by an effort to create a single 

database, DSIRE (Database of State Incentives for Renewable Energy), which is funded by the 

Department of Energy (DoE) and maintained by a partnership of the North Carolina Solar Center and the 

Interstate Renewable Energy Council (IREC).  

 

For each mandatory RPS, DSIRE contains: the starting date, the share of renewables (that count towards 

the RPS) at the starting date, the targeted share of renewable, and the date by which that target must 

be achieved. In order to make these directly comparable with a single parameter, we compute the 

necessary average annual growth rate of the share of renewables ( and , respectively, from the 

model), graphed as the line connecting the DSIRE data points in Figure 1:  

 

         (    )
  

 

Figure 1 summarizes this data for states with a mandatory RPS. For each voluntary RPS, DSIRE contains 

some of this same data but, crucially, does not include the share of renewables (that count towards the 

RPS) at the starting date; hence, we were unable to perform the same transformation for each voluntary 

RPS. While that prevents us from making the same use of the voluntary RPS, this does keep our research 

design cleaner – it is not clear how much a voluntary RPS is just cheap talk versus something that might 

actually trigger a mandatory RPS if voluntary targets are not met. In addition to the complication of 

whether the RPS is voluntary, 3 mandatory states (Iowa, Texas, and Michigan) have an RPS that specifies 

an absolute amount of generation capacity instead of a share of generation. For Iowa, we decided to 

discard our observations on its RPS because it is quite old (i.e. from 1991) and specifies a negligible 

quantity of renewable generation, perhaps suggesting that it is a law without teeth that no one has 

bothered to sunset; for Texas and Michigan, we converted the absolute capacity requirements into 

comparable terms of a share of generation using the generation data that we gathered from EIA. 

 

b. Annual Generation Data from EIA 

 



9 
 

DoE’s Energy Information Agency (EIA) provides a wealth of data on many aspects of energy production 

and consumption. Among the data collected by EIA is the annual generation (in MegaWattHours) from 

1990-2010 for the total electric power industry by source (coal, petroleum, natural gas, other [fossil] 

gases, nuclear, hydroelectric conventional, wind, solar thermal and photovoltaic, wood and wood 

derived fuels, other biomass, and other). We converted these levels in to TeraWattHours, for 

convenience, and then also aggregated coal, petroleum, natural gas, other [fossil] gases, and nuclear 

into non-renewable energy and computed the share of each state’s generation in each year from all 

renewable sources. Figure 2 presents a time series graph for most states, split in an ad hoc fashion into 

natural regions, with dotting to indicate the lack of an RPS (and dashing to indicate if an RPS is 

voluntary). By inspection, alone, it is not immediately clear whether an RPS actually increases the 

deployment of renewable from the previous year (even for the mandatory states). Indeed, Figure 3 

suggests that the DSIRE and EIA data, although strongly correlated, have a noisy connection. 

 

c. Political Data from DW-Nominate 

 

The gold standard in measuring political preferences is DW-Nominate, initially created by Poole and 

Rosenthal (1985) and steadily updated through Carrol et al. (2009). Essentially, DW-Nominate scores 

every legislator in the US House of Representatives since 1789 according to their voting record using a 

Random Utility Model (RUM); in theory, legislators who have voted the same way have revealed that 

their stable preferences are similar. 6 To convert DW-Nominate scores to the unit interval (i.e. the 0 to 1 

scale assumed in the theoretical model), we perform the inverse-logit transform mapping 0 to a new 

center of 0.5 and preserves the variance: 

 

     
 

             
 

 

This function maps an extreme liberal to a value near 0 (e.g. Dennis Kucinich to 0.05) and an extreme 

conservative to a value near 1 (e.g. Ron Paul to 0.99).7 Although this transformation on DW-Nominate 

provides a fine measure of the preferences of members of Congress from a state, our theoretical model 

is focused on the state legislature. To make the connection between these two bodies of 

representatives, we assume that the distribution of preferences elected to the national delegation is 

representative of the state legislature. Hence, the distribution of scores across Ki members of Congress 

is representative of the distribution of scores within state i’s own legislature. Under the median-voter 

                                                           
6
 DW-Nominate actually contains 2 dimensions of scores. The first dimension, which we use here, nicely lines up 

with liberal versus conservative in the sense of preference over government interference in private markets. The 
second dimension, which we do not use here, appears to mostly line up with attitudes on slavery and civil rights 
but loses its significance altogether by 1980.  
7
 Although Ron Paul maps to 0.99 and Dennis Kucinich only maps to 0.05, this should not be interpreted as a 

weakness in the data. Because every Congress includes some incumbents from previous Congresses, the DW-
Nominate scores are comparable over time. Hence, the most liberal member of the Congress in 2009 may be to 
the right of the most liberal member of Congress ever. Hence, Ron Paul mapping to 0.99 is a reflection of how 
much America’s conservatives have tacked to the right (relative to the rest of U.S. History).  
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theorem, motivated by majority rule, the decisive preferences within the state legislature belong to the 

median representative. Hence, the theoretical model’s reliance on med(Sit): 

 

   (   )        
 

(    ) 

 

Although such majority-ruled passes as a first-order approximation of state legislatures, it is a stylized 

fact of recent history that little legislation is passed when the legislature is excessively polarized. We 

construct a measure of polarization from the variance of scores. Our transformation of DW-Nominate 

provides an absolute maximum to the variance of scores, which occurs when half of the delegation has a 

score of 0 and the other half has 1 (yielding a variance of ¼, the maximum variance of a Bernoulli 

random variable), allowing us to use a measure of polarization (between 0 and 1) equal to the variance 

of Sit divided by ¼ : 

 

   (   )  
   
 

(    )

 
 ⁄

 

 

Note that, for those few states that are so small that they only send a single representative to Congress 

(Alaska, Delaware, Montana, North Dakota, South Dakota, Vermont, and Wyoming), pol(Sit) will be 

undefined. For all other states, Figure 3 provides visualization of the role of the median and polarization 

measures on the distribution of political preferences within a state in a given year.  

 

d. State Industry Data from BEA 

 

The Bureau of Economic Analysis (BEA) collects data on the GDP of every industry, at the level of 62 

different 3-digit NAICS codes, for every year from 1997-2010.8 Figure 6 depicts this annual GDP data for 

a subset of states without an RPS and a subset of industries. Figure 7 compares the non-RPS state 

average for each industry, i.e. mean within industry and year conditional upon being a non-RPS state, to 

corresponding time and industry for select RPS states. As can be gleaned from these figures, each state-

industry appears to have a different intercept even though slope appears to be common across states to 

a particular industry. 

 

e. Electricity Price Data from EIA 

 

EIA collects average retail prices for each state from 1997-2010, measured in cents per hour. We convert 

this measure into millions of dollars per TeraWattHour.9 In theory, an RPS should increase this price and 

dampen the GDP of industries most sensitive to energy prices. Figure 8 displays the comovement of 

prices for non-RPS states and select RPS states, as well as the corresponding figure for GDP and a 

                                                           
8
 A handful of values are already in the data for 2011 but most are N/A (Not Available). 

9
 As with all other nominal variables in our data set, we are unconcerned about converting into real dollars of a 

particular year because our specifications effectively absorb these transformations. 
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vertical line indicating the date that the RPS began. However, because of classic endogeneity problems, 

we need to instrument for price in such analyses. 

 

f. Renewables Cost Data from Lawrence Berkeley National Labs 

 

The classic instruments for price are exogenous cost shifters. In this context, the cost of the hardware 

serves as a reasonable instrument. In theory, this cost is set by the state of the industry and the usually 

dwarfed size of the domestic market relative to the world market. Lawrence Berkeley National Labs 

(LBNL), funded mostly by DoE, has maintained a data set of the average cost of a watt of solar 

photovoltaic capacity from 1998 to 2010. Clearly decreasing but somewhat noisy due to the nature of 

LBNL’s sampling, we smooth out this series by replacing non-monotonic points (e.g. 2000) and missing 

points (1997) with the linear trend as depicted in Figure 9. 

 

g. Renewable Potential Capacity from National Renewable Energy Labs (NREL) 

 

In addition to LBNL, DoE supports dozens of other national labs; perhaps the most important national 

lab to renewable energy is NREL. NREL has produced an estimate of the total potential, in technical 

terms (i.e. ignoring economic feasibility), for each major renewable resource in each state. We have 

simply summed these across the set of renewable resources considered by NREL. Figure 10 presents the 

distribution of potential (in log scale) across states. Just as we can use LBNL’s measure of the cost of 

solar panel hardware as an instrument for price, we can also use this NREL potential measure as an 

exogenous cost shifter. Because renewable energy generation requires considerable amount of land, it 

is congestible and moreover land is heterogeneous; hence, we would expect that the sites first selected 

for renewable would be  

 

h. Factor Cost Shares from BEA 

 

In addition to GDP by state and industry, as specified by 62 3-digit NAICS codes, the BEA collects data on 

the nation-wide flow of resources from 1998-2010 across industries in the form of input-output (I/O) 

tables. We utilize the BEA’s I/O data in the form of their “Use Table”, which describes how much 

industry j used of the output of industry –j (dollar denominated). We use this data to ground-truth our 

second stage estimates of the elasticity of industry output to the price of electric power. In theory, if 

production does follow a Cobb-Douglas structure, then the utility’s fraction of the overall expenses of 

industry j should be equal to the absolute value of that elasticity; therefore, we would at least expect a 

monotonic relationship between these factor shares and the sensitivity of GDP to PE. Hence, we present 

this I/O factor-share data in the form of tornado diagrams in Figures 11 and 12. 

 

i. State Population from US Census Bureau 

 

The US Census Bureau’s population data is widely revered as a gold standard in data quality. Even 

though the decennial Census is only collected twice (1999 and 2009) during our period of study, the 

Census provides some highly accurate estimates of population for each state from 1990 to 2010. We 
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have taken those estimates without alteration – they will ultimately divide state GDP across inhabitants 

to reflect a decision-making process by policymakers where income per capita is central.  

 

j. Operating Costs from EIA 

 

Each regulated utility must submit detailed costs to the Federal Energy Regulatory Commission (FERC), 

which only makes them available through a database that is so unwieldy that it has given rise to a 

cottage industry of 3rd parties offering proprietary interfaces. Fortunately, EIA subscribes to one of these 

services and has queried FERC data to produce national averages for detailed costs (Operations, 

Maintenance, Fuel, and Total) for each year from 1999-2010 and the major generating technologies 

(hydropower; gas, solar, and wind; nuclear; fossil steam). To make operational use of this data, we 

assume that these inputs are all traded on perfectly competitive markets that equalize their factor costs 

across states (but no over time).  

 

Given these bold assumptions, we separate out solar and wind by assuming that they have the same 

O&M costs as gas but the same fuel cost as hydropower (i.e. no fuel cost). We then construct our 

measure for renewable and non-renewable operating cost as the weighted average of these 

technologies with the weights set to the share of generation from the technology (according to EIA’s 

generation data), all multiplied by an overhead rate to cover indirect costs. We estimate the overhead 

rate from the ratio of total O&M + fuel costs weighted by generation technology to the total costs taken 

from another EIA table from the same source (8.1 versus 8.2, both in EIA’s Annual Energy Outlook and 

both produced from the same FERC data), which lacks the breakdown by technology but is more 

extensive and (presumably) inclusive in its breakdown of costs: Electric Utility Operating Expenses, 

Operation, Production, Cost of Fuel, Purchased Power, Other, Transmission, Distribution, Customer 

Accounts, Customer Service, Sales, General Administrative, Maintenance, Depreciation, Taxes, and 

Other Utility. Considering the common data source and variable labels, we have assumed that the latter 

table covers the indirect/overhead costs omitted from the other table. Hence, we can estimate the 

overhead rate by taking a ratio of these costs. The resulting overhead rate averages around 75% (i.e. the 

technology-specific operating costs should be scaled up by a factor of 1.75). Multiplying that overhead 

by the weighted average of operating costs yields an operating cost of around 1.2 ¢/kWh for renewables 

and around 5.7 ¢/kWh for non-renewables. As with the initial missing year for the LBNL cost data, the 

missing operating costs for 1997 and 1998 are filled with imputed values fitting the linear trend 

(decreasing for non-renewables and flat for renewables).   
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IV. Econometric Methodology 

 

The estimation proceeds in 3 stages: a non-parametric prediction of energy prices from costs, a reduced-

form panel regression of state-industry GDP on these predicted energy prices, and a Bayesian estimation 

of a structural model. In this section, each of these stages is discussed in turn. 

 

a. Non-parametric Prediction of Energy Prices from Costs 

 

In order to capture the loss in per capita income due to an RPS, we need to characterize how the price of 

electric power changes with an RPS and how GDP changes with those prices. Although regressing GDP 

on price is the most direct approach, it is plagued by the fact that energy prices may have some 

covariance with the disturbance term (which includes prices of other goods that are omitted from the 

specification, according to our very own theoretical model). Hence, we seek to instrument for the price 

of electric power using a couple of exogenous cost shifters: the time-invariant technical potential for 

renewables in each state (KRMaxi) and the state-invariant average cost (Ct) of adding additional renewable 

capacity (in the form of solar PV panels) in year t. Hence, we specify that the within state variation in log 

price, controlling for time fixed effects, should be some monotonic function of these exogenous cost 

shifters: 

 

                (         )                 

 

Because we do not know the actual functional form of g() and because our objective from this step is to 

obtain a good fit so that our instruments are not weak, we take a non-parametric approach to fitting 

that functional form. As is well-known, a sufficiently high order polynomial can approximate any 

continuous functional form arbitrarily well. As is slightly less well-known, high order polynomials suffer 

from near multicollinearity (even for relatively low level polynomials) when one uses the monomials as a 

basis. Hence, we employ Chebyshev polynomials due to their orthogonality properties:  
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Where the ’s are utilitarian parameters, M is the order of the Chebyshev polynomial in each direction, 

and Cheby() is a term in an order M Chebyshev polynomial with the following functional form: 
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]   )) 

 

We still must choose M, the order of the Chebyshev polynomials. What makes this approach non-

parametric is that n would increase with successive increases in sample size and the fit would get 
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arbitrarily close to the true underlying relationship. Although there are more objective means of 

selecting M, such as cross-validation or plug-in estimators, we select it based on a subjective criterion. 

We select the highest M so long as the predicted relationship remains monotonic because any 

departure from monotonicity is a clear indication of over-fitting the data (given that theory dictates a 

monotonic relationship).  

 

b. Reduced-form Panel Regression of State-Industry GDP on Instrumented Energy Prices 

 

Given our estimates from the first step, it is a relatively straight-forward exercise to recover the ’s using 

panel methods. We can use a basic model that accommodates our findings from inspecting the raw data 

(e.g. industry-specific time trends and large differences in intercepts across states and industries): 

 

                        ̂          

 

Given our structure of the right-hand side, which is based on our inspection of the data, this amounts to 

a SUR of J=62 regressions on the data demeaned by state-industry. Because we are performing these 

regressions on predicted log price, each of these J regressions is a two-stage least squares (2SLS) 

estimation (which is equivalent to instrumenting log electric power prices with its exogenous 

regressors). Because the SUR then performs an addition feasible generalized least squares (FGLS) to take 

advantage of cross-equation correlations in the disturbance terms, so we will have effectively performed 

3 stages in these two steps.10  

 

c. Bayesian Estimation of Structural Model 

 

The structural model consists of 2 estimation equations. The first equation comes from utility revenues 

(given by the product of electricity prices times the quantity generated); it identifies the investment cost 

parameters from the 700 observations on revenue (net of operating cost), quantities, and the 

exogenous cost shifters that previously served as instruments in the reduced-form panel estimation:11 

 

              [ (     )   ]     [         ]     [   (  
      

      
) (

 

   
)]       

 

The other estimation equation comes from the state’s FOC, which contains the previously derived 

expression for the partial derivative of energy price with respect to , equating marginal benefit to 

marginal cost. The equating of marginal benefit and cost yields an implicit equation for the optimal  

(censored unless an RPS is passed in year t) that identifies the benefit parameters (1, 2, 3, 4) from 

the 23 observations on  given estimates of the cost parameters:12 

                                                           
10

 For this reason, many analysts call this procedure 3SLS (following Zeller). 
11

 Because r cannot be separately identified from the  parameters, we set it to 0.08, which is an innocuous 
assumption that does not affect our results but does aid in interpretation. 
12

 The 23 observations come from observing 23 states adopting an RPS between 1997 and 2010.  
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 Note that the left-hand side variable (i.e. marginal cost) is constructed from the parameters estimated 

in the revenue equation but that these benefit parameters do not enter the revenue equation. Although 

one could exploit this diagonal structure to perform a 2-step regression, we do not actually estimate it 

that way for two reasons. First, it can be difficult to produce valid estimates of the standard errors of the 

parameters from the second step. Second, more importantly, joint estimation means that each 

parameter is partially identified by the respective data for every equation in which it is included. Hence, 

the 700 observations provide additional information for identifying the benefits parameters, which 

would otherwise suffer from a severely small sample size.  

 

In addition to the parameters from the revenue equation, the left-hand side variable is also constructed 

from the elasticity parameters identified in the previous stage of analysis. Hence, our estimates should 

also account for the fact that these elasticity parameters estimates have some uncertainty. Moreover, 

these parameters non-linearly interact on the left-hand side. To accommodate this non-linearity and 

also jointly estimate this system of equations, we require a simulation-based estimator. While other 

simulation estimators might suffice, we believe that Bayesian MCMC is particularly well-suited to this 

problem because it is robust to small sample sizes and we have observed only a small sample of 

mandatory RPS policies (which we describe by the growth rate ). In order to minimize the influence of 

the priors on our parameter estimates, we specify non-informative (i.e. [virtually] flat) priors. 

 

Because we have already performed a reduced-form estimation of j, we appeal to Empirical Bayes 

methods in providing a joint normal prior on the 62 j that is centered on the point estimates from the 

reduced-form estimation with variation around that point estimate described by the variance-

covariance matrix also taken directly from their reduced-form estimation. The estimates will, then, 

receive some Bayesian updating from the information contained in the data about the estimation 

equations; however, most of the information will go to identifying the parameters with flat priors.13  

 

To complete specification of the model’s likelihood, we must make a distributional assumption for each 

of the ’s: 

 

             (     
 )          

 

Where we make the fairly standard identifying assumption that 4 = 0.14  

  
                                                           
13

 The  and  parameters are normals with miniscule “precisions” (i.e. the reciprocal of variance) but centered on 
reduced form estimates in order to speed convergence. The “precisions” for each equation are specified as a 
gamma(0.01,0.01). 
14

 Because the net revenue regression has no intercept, 5 is identified.   
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V. Results 

 

a. Non-parametric Prediction of Energy Prices from Costs 

 

Goodness of fit is very important in this first stage because a weak fit means that these instruments are 

weak and will provide a weak signal on the quantities of interest relative to the noise, resulting in large 

standard errors.15 As can be seen in Table 2, our first stage regression explains most of the variation in 

log energy prices as measured by an R2 of 0.95 and the plot of observed versus predicted log energy 

price in Figure 15. In addition to the goodness of fit, two other features stand out in that figure. First, the 

black points (prices in states with a mandatory RPS after the RPS has started) tend to be higher than the 

blue points (prices in states without a mandatory RPS [yet]). Second, a handful of points seem to be 

outliers that are relatively distant from the core cluster; these points all belong to Hawaii which is 

absolutely distant from the mainland and hence it is both unconnected to the grid and it is much more 

costly to ship non-renewable fuel to Hawaii (which is endowed with virtually no fossil fuel deposits).  

 

Although the particular estimates in Table 2 have little interpretable meaning and their individual 

significance is irrelevant, their joint ability to predict log energy prices is important. Because the R2 of 

0.95 is already achieved with a first-order Chebyshev polynomial, there is little variation left to be 

explained by adding the [(2+1)2 – 1] – [(1+1)2 – 1] additional regressors of the second-order Chebyshev 

polynomial; indeed, the increase in R2 from the additional Chebyshev terms is negligible.16 Moreover, 

the second-order Chebyshev polynomial’s over-fitting of the data produces a highly non-monotonic 

saddle point, as can be seen in Figure 14 and contrasted with Figure 13. For these reasons, we selected a 

first-order Chebyshev polynomial (with interaction term) for our first stage. If more data became 

available, we would likely select a higher order polynomial with the order increasing in the sample size 

to produce an arbitrarily good fit to the underlying surface from an asymptotic quantity of data – hence 

this remains a non-parametric procedure even though the procedure has selected a low order model 

that coincides with an off-the-shelf reduced-form specification. 

 

b. Reduced-form Panel Regression of State-Industry GDP on Instrumented Energy Prices 

 

Our second stage regression of log GDP on the log energy price predicted by the instruments, as well as 

state-industry specific intercepts and industry-wide time trends, produces 2 full tables of results: Table 2 

and Table 3. Of all of the industries, only 4 goods industries appear to be on a significant decline: 

textiles, printing, leather (& apparel), and motor vehicles (& parts). Most of these are light 

manufacturing that has been moving overseas for decades. The decline in wood products is not 

                                                           
15

 A strong correlation between the instruments and the “endogenous” regressor is one of two assumptions 
required for IV regression. Unlike this one, the second assumption – that instruments are orthogonal to the 
unobserved variation in the disturbance term –is not testable. Instead, it is justified with a theoretical argument. 
Exogenous cost shifters, as used here, are a commonly employed and usually accepted argument. 
16

 We investigated this for Chebyshev polynomials up to order 4, at which point the [(4+1)
2
 – 1] regressors had 

thinned out the data so much that identification became an issue. 
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statistically significant, neither is the increase in primary metals. All other goods and service industries 

enjoy an increasing trend nation-wide.  

 

The point estimate for the elasticity of output to energy prices is negative for the majority of industries. 

Most of those negative elasticities obtain some level of significance. Yet, there are some notable 

exceptions that are significantly positive. Water transportation, warehousing  (& storage), air 

transportation, electrical equipment/appliances, computers/electronics, and utilities are all significantly 

positive. Except for utilities, each of these industries can be viewed as a substitute for energy (or an 

energy-intensive industry); for instance, higher electricity prices might spur consumers to purchase 

more energy efficient appliances and retire vintage units. Microeconomic theory provides a 

straightforward reason why utility profits appear to be increasing in energy prices: current market 

conditions tend to have consumers on the inelastic portion of their demand curve. Because electric 

power utilities are natural monopolies in the locality of their service area, they would like to charge 

higher prices to bring in more revenue than what’s lost to a lower quantity demanded at that price. 

Despite PUC regulation targeting an economically efficient outcome from a perfect competition 

counterfactual, demand for electric power remains price elastic.17  

 

Figure 16 plots the elasticity of output to energy prices for the 62 industries against the utility’s share of 

costs born by industries. If the technologies employed by various industries conform to the Cobb-

Douglas production function, then the factor shares would equal the elasticity (in magnitude, the sign of 

factor shares cannot be negative but the elasticity should be negative under the standard partial 

equilibrium model). In this case, the points would fall along a line that leaves the origin with a slope of 

negative 1. Contrary to evidence presented by van der Werf (2008), our results provide some support 

for Cobb-Douglas technologies: the best linear fit to these 62 points gets extremely close to the origin 

and has a slope that is statistically indistinguishable from -1. Except for right near the origin, where it is 

hardest for the confidence region to avoid the positive orthant, the confidence region remains negative. 

Yet, there are half a dozen individual industries with confidence bands that do not drop below 0 (water 

transport is the point highest up, the fourth highest with narrowest confidence bands is the utility 

industry). For these industries with most (or virtually all) of their uncertainty distribution’s probability 

mass above 0, these estimates can be taken as evidence of the importance of general equilibrium 

effects. Indeed, each elasticity measures the partial change in GDP in its industry resulting from the 

change in an RPS state’s price from the exogenous shifters (the cost of renewable capital and renewable 

potential constraints) while holding all other prices constant, even though those other prices are not 

actually held constant in the actual economy (the fundamental data generating process). 

 

c. Bayesian Estimation of Structural Model18 

 

                                                           
17

 Because our location on the demand curve is related to the cost of supplying electric power, it is reasonable that 
relatively higher cost of production make it prohibitive for PUCs to target rates where consumers would be price-
elastic. 
18

 Our results were generated using R’s interface to JAGS (Just Another Gibbs Sampler) over a parallel environment 
with 1 cluster node per MCMC chain.  
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As with any simulation based estimator that relies on iterations, it is important that the method has 

reached convergence (i.e. inside some tolerance) over the course of those iterations. For Bayesian 

MCMC estimation, the standard practice is to allow the model to execute for a large number of 

iterations of burn-in (e.g. 10k, as used here) so that the Markov Chain sequence has converged from the 

starting values to the ergodic distribution.19 To gauge convergence, the standard practice is to launch 3 

(or more) independent chains from difference starting values and plot the timepath for each chain. If 

the chains have converged then the timepaths will be wandering around the same stationary mean, 

which is sometimes referred to as a good mixing of the chains in the parameter space. Examining the 

timepath for our 3 key parameters (N, R0, R1), displayed in the top row of Figure 17, convergence of 

our 3 chains (colored as red, blue, and green) is obvious with such high-frequency bouncing around that 

mean that the timepaths resemble a solid horizontal line (with some fuzzy whiskers) as if made by a 

magic marker along a ruler.  

 

When chains do not rapidly bounce around the ergodic mean, there is a fair amount of persistence in 

the Markov chain. This autocorrelation affects how long the MCMC sampling needs to run – we seek 

[virtually] independent draws from the ergodic posterior distribution of uncertainty and we obtain those 

via sequential sampling (i.e. sampling every nth draw from the Markov Chain). Hence, we need to make 

sure that n is big enough that we have virtually independent draws (and that the MCMC sampling has 

ran long enough for us to obtain enough draws when we’re thinning out all but every nth draw) As can 

be discerned from the autocorrelograms in the second row of Figure 17, our autocorrelation has died 

out by the 10th lag. To be safe, we thin out the MCMC samples to every 30th draw.  

 

The last major diagnostic examined here is the distribution generated by each chain. The third row of 

Figure 17 presents kernel densities for each of the 3 key parameters; these densities are virtually 

indistinguishable. The [joint] distribution of MCMC draws from the uncertainty distribution is the basic 

result of Bayesian estimation. Again we represent the distributions for these key parameters, in 

histogram form with thinning to every 30th draw (giving us 1002 draws from the 3 independent chains), 

in Figure 18 along with the benefits parameters and a couple elasticity parameters that are 

representative of the entire set. Along with these histograms, we have also plotted the density obtained 

from our preliminary reduced-form estimates using classical techniques.20 We should note that the 

classical density for the uncertainty distributions on the  parameters is a t distribution with 19 degrees 

of freedom, which is probably a misspecification because the derivation of the t-distribution requires 

that all of the regressors and regressands be normal (because the disturbance is linear in these 

variables, this implies that the disturbance will be normal) and we have made no effort to transform our 

regressors and regressand so that they (arbitrarily, in terms of economic theory) conform to normality.  

 

                                                           
19

 Adaptive sampling schemes are also calibrated during this burn-in period. 
20

 Because the classical uncertainty distribution on R1 was so broad that it dwarfed the histogram, we suppressed 
it in this plot.   
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Running the two equations together has the effect of shifting the  parameters slightly downward, 

perhaps with some negligible reduction in uncertainty. We might expect little change due to the fact 

that these parameters are identified by such a large sample size. The mean of the posterior distribution 

for each  is worth consideration. A N value of around 325 tells us that an additional TWh of non-

renewable generation requires an investment of around $325M, which amounts to about 25 GW of 

additional capacity that is 50% utilized or about $13M/GW. Clearly, this is a gross underestimate relative 

to the standard figures from EIA, which suggests that identification of this investment function could be 

greatly aided by harnessing more data. Likewise, a  R0 value just beneath 1 suggests that the LBNL 

estimates of renewable hardware are fairly accurate, although perhaps a bit of an overestimate since 

LBNL focuses on photovoltaic panels and those tend to be one of the more expensive forms of 

renewable energy Finally, a R1 value of around 722k suggests that renewable congestion costs can 

become quite steep; once a state is at 10% of its potential, this non-linear portion of investment cost 

reaches as high as $76B. Although this figure sounds quite large, there is little data directly identifying it 

because most states are so far down on their potential that they are in the virtually flat portion of the 

hyperbola. Again, more data and more flexible functional forms might improve this estimate. 

 

Likewise, the  posteriors are slightly jostled from priors (obtained from our classical 3SLS).21 However, 

change in the posterior distributions of the benefits parameters is dramatic. The new means appear to 

be about a standard error (as measured by the preliminary classical reduced-form methods) away from 

the old mean. The movement on 1 is so dramatic that its sign has flipped. Most importantly, the 

credible intervals (the Bayesian analogue of confidence intervals is just the interval spanned by 

symmetric quantiles of the posterior) are narrow enough that results are now statistically significant. 

Utilizing Bayesian MCMC, which can still be effective in small samples and seamlessly handle non-linear 

simulation-based estimation, has therefore enabled us to reach 4 significant findings that we had 

previously lacked when we simply relied on classical reduced-form methods.  

 

Our findings on benefits are that centrists opposed mandating renewables in 1997 (i.e. 1 < 0), that 

leftists in 1997 highly valued an RPS in opposition to right-wingers (i.e. 3 > 0), that people from all 

political stripes seem to increasingly value renewable mandates over time (i.e. 2 > 0), and that 

conservatives have warmed up to renewable mandates over time while liberals have cooled off a bit. 

Most importantly, these trends are convergent so that we may actually be approaching a consensus. 

Further evidence can be gleaned from Figure 21, where we see the state of the political variables in 21 

of the 23 states that have adopted a mandatory RPS.22 It appears that red states are increasingly 

implementing an RPS mandate despite considerable polarization of political opinion within these red 

states.  

 

  

                                                           
21

 Credible intervals for each  is presented in the  
22

 Two states (Delaware and Montana) are excluded because they have only 1 representative in Congress and 
hence we cannot measure their polarization; their median score is around 0.85 (just to the left of Arizona). 
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VI. Conclusion 

 

In this paper, we assembled a wealth of data on industry, income, various aspects of the electric power 

industry, renewable energy, politics, and RPS mandates for the 50 states from 1997-2010. We used this 

data to fit a structural model of legislature decisions on whether to implement an RPS, including a 

submodel of investment and operations for the electric power industry, and a simple characterization of 

other industries as Cobb-Douglas technology operating in markets fixed in partial equilibrium. We find 

evidence to support this model in successive steps of analysis: a nonparametric regression of log energy 

prices on instruments (exogenous cost shifters), a reduced-form panel data regression of log GDP on 

those predicted log prices with a SUR FGLS weighting, and a Bayesian MCMC estimation of a system of 

two equations: utilities’ revenue requirement as a function of their operating costs plus a fair rate of 

return on the value of their renewable and non-renewable generation assets and the first-order 

condition of the median voter in the state who equates the marginal benefits of an RPS (varying with 

time and their place on the political spectrum) to its marginal costs (a reduction in GDP per capita due to 

the increases in energy prices resulting from an RPS).  

 

Future research should hone the investment cost functions with more flexible functional forms and, 

where available, direct data on the cost of investment in generation capacity. Reexamining the 

treatment of voluntary RPS legislation might provide additional points for identifying benefits 

parameters. One could even try to add the censoring equation to the structural model to identify the 

parameter on the bargaining costs resulting from political polarization. Of course, our treatment of 

political polarization is rather monolithic – variations in particular rules, coalition forming, logrolling, and 

the like may well result in the passage of an RPS even when the electorate is polarized. Nonetheless, our 

best understanding of the relationships that we have identified in the data, given the caveats, is rather 

encouraging.  

 

We find that centrists opposed mandating renewables in 1997 (i.e. 1 < 0), that leftists in 1997 highly 

valued an RPS in opposition to right-wingers (i.e. 3 > 0), that people from all political stripes seem to 

increasingly value renewable mandates over time (i.e. 2 > 0), and that conservatives have warmed up 

to renewable mandates over time while liberals have cooled off a bit. Most importantly, these trends 

are convergent so that we may actually be approaching a consensus, which may well lead a long 

overdue overhaul to national energy policy.  
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Figure 1. Starting date, starting level, target level, target date, and average growth rate necessary to comply with state's 
mandatory RPS. It appears that the following states have some of the most ambitious growth rates to reach their RPS 
targets: Minnesota, Illinois, Maine, Colorado, and Hawaii. 
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Figure 2. Share of renewables for select states by region. Dotted indicates no RPS, dashed indicates a voluntary RPS, and 
solidu indicates a mandatory RPS. The breadth of heterogeneity is notable. 
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Figure 3. The share of renewables (counted  by the state's RPS) in the starting year of an RPS is positively correlated to (but 
not perfectly so) the more inclusive EIA measure of renewables share. 
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Figure 4. Distribution of political scores across a state in a year for 4 particular states/years with black dots to indicate 
individual members of Congress, selected so as to illustrate the appropriate of our transformed measure of political score. 
When the mode(s) of the distribution occur(s) at the extreme(s), then the distribution is polarized. When both extremes are 
modes, then we dub it “bipolarized”. Wisconsin is bipolarized because 3 members are clearly leftists, with scores beneath 
0.3, while 3 members are clearly right-wingers, with scores above 0.8 (including Paul Ryan, who is just below the most 
conservative member of the Wisconsin delegation, Jim Sensenbrenner. In addition to having swung from red in 1999-2000 to 
blue in 2009-2010, Colorado is less polarized than Wisconsin but more polarized than Connecticut and Utah (both of whom 
exhibit a mode interior to the extremes). 
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Figure 5. For states with well-defined diversification and a clear observation on their RPS (as mandatory during our study's 
period or no RPS), we can compare the range of median political score against the range of the polarization of political score. 
Blue, red, and purple scoring is based on whether the state tends to elect Democrats to Congress (then blue), conservatives 
to Congress (then red), or some mixture (then purple).  
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Figure 6. An abridged view of GDP for a 9 industries (selected in order of NAICS code) in 6 non-RPS states (selected 
alphabetically). 
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Figure 7. GDP (in log scale) a for select particular RPS States (in black) for  select years compared to the average for those 
same industries in non-RPS states, with a vertical bar indicating the RPS starting date. 
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Figure 8. GDP over time for a select few RPS states. The solid lines are the timepath of prices and the dashed indicate output 
(in log scale). 
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Figure 9. The fall in the average cost of capital that generates renewable energy. Red dots indicate actual data, which was 
smoothed to a linear trend when non-monotonicities appear or data is missing. 
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Figure 10. Total Renewable Potential, given current technology (but ignoring whether this capacity is economically efficient, 
i.e. lowest cost). Green indicates states with a mandatory RPS, the lighter green are the 2 states (Michigan and Texas) where 
the RPS set a minimum level of capacity, yellow indicates Iowa (mandatory but in name only due its miniscule level and 
decades old starting date), orange indicates states with a voluntary RPS, and red indicates states that have no RPS. 
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Figure 11. Factor share of utilities to major goods-supplying industries. Utilities, that have the smallest factor shares may 
well have a large positive elasticity of output (i.e. revenue) to energy prices because that is the price of their output. 
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Figure 12. Utilities factor cost shares for major service-supplying industries. Note that  government is excluded from this and 
the previous Figure on principle -- it is usually not treated as just another part of the private economy. 
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Data Source Variable(s) 
Unit(s) of 

Measurement 

Cross-Sectional 
Unit(s) of 

Observation Years 
Number of 

Observations 

DSIRE 

Mandatory RPS; 
RPS Starting Date; 

RPS Aggressiveness (i.e. 
Average annual growth 

rate needed to hit 
target % of generation 

from renewable 
sources by specific 

year) 

Binary;  
Year; 

% 
50 States 

1991-
2012 

1,100 = 50 22 

EIA 
Generation|Renewable; 

Total Generation 
TWh; 
TWh 

50 States + DC 
+ US Total  

1990-
2010 

1,092 = (5+1+1) 

21 

DW-
Nominate 

Median(Score|State) 
Min(Score|State) 
Max(Score|State) 

Score (the 
modeled 

latent variable 
from a RUM 

on voting 
records) 

Members of 
U.S. House of 

Representatives 
for each of the 

50 States 

1789-
2010 

36,634 

BEA log(GDP) $ 
62 Industries  
(50 States + DC 

+ US Total) 

1997-
2010 

45,136 = 

6221 
(5+1+1) 

EIA 
Average State 

Electricity Price 
¢ / kWh 

50 States + DC 
+ US Total 

1990-
2010 

1,092 = (5+1+1) 

21 

Lawrence 
Berkeley 
National Lab 

Smoothed (Average 
Cost of Adding Solar PV 

Capacity) 
$ / W None 

1998-
2010 

13 

National 
Renewable 
Energy Lab 

Potential Generation 
from all Renewable 

Sources 
Sum (TWh) 

50 States + DC 
+ US Total 

None 52 

BEA : I/O 
(“Use”) 
Tables 

Cost Share = Utilities/ 
Sum(All) 

%  = $ /  
sum( $) 

62 Industries  
62 Industries 

1998-
2010 

49,972 = 

13622 

Census Population People 
50 States + DC 

+ US Total 

1991-
2000 & 
2001-
2010 

1,040 = 

(5+1+1)20 

IEA 

Nation-wide Average 
Operating Costs for 

Renewable and Non-
renewable capacity 

M$ / TWh None 
1999-
2010 

12 
12 

Table 1. Summary of Data Sources 

 

  



35 
 

 

 

 
Order of Chebyshev Polynomial 

  
1 

  
2 

 

       
Cheby(Ct;1)Cheby(KRMax;0) - 0.072 *** 

 
0.421 

 

 
( 0.016 ) ( 0.308 ) 

       
Cheby(Ct;1)Cheby(KRMax;1) - 0.072 *** 

 
0.772 

 

 
( 0.019 ) ( 0.474 ) 

       
Cheby(Ct;0)Cheby(KRMax;1) 

 
0.015 

 
- 0.092 * 

 
( 0.014 ) ( 0.020 ) 

       
Cheby(Ct;2)Cheby(KRMax;0) 

   
- 0.093 *** 

    
( 0.038 ) 

       
Cheby(Ct;2)Cheby(KRMax;1) 

   
- 0.131 * 

    
( 0.057 ) 

       
Cheby(Ct;2)Cheby(KRMax;2) 

   
- 0.078 ** 

    
( 0.025 ) 

       
Cheby(Ct;1)Cheby(KRMax;2) 

    
0.269 

 

    
( 0.170 ) 

       
Cheby(Ct;0)Cheby(KRMax;2) 

   
- 0.060 *** 

    
( 0.014 ) 

       
Time Fixed Effects 

 
 

  
 

 
State Fixed Effects 

 
 

  
 

 

       
R

2
 

 
0.954 

  
0.956 

 

       
States 

 
50 

  
50 

 
Years 

 
14 

  
14 

 
Observations 

 
700 

  
700 

 
Degrees of Freedom 

 
634 

  
629 

 
       Monotonic 

 
 

  
 

 
Table 2. Results of First Stage regression of log energy price on orthogonal polynomials of instruments. 
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Figure 13. Orthogonal polynomial surface, at selected order, monotonically fitting over instruments. 
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Figure 14. Orthogonal polynomial surface, at next higher order, non-monotonically fitting over instruments.  
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Figure 15. Observed log price versus log price as predicted by the instruments. States without an RPS (yet) are plotted in a 

semi-transparent blue and states with an RPS are plotted in an opaque black. 
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Industry Name 

3-digit 
NAICS 
Code 

GDP - Energy 
Price Elasticity 

Elasticity's 
Standard Error Time Trend 

Trend's 
Standard Error 

Motor vehicles, trailers, & parts 121 -0.752 *** ( 0.160 ) -83.654 *** ( 13.768 ) 

Paper products 129 -0.308 **  ( 0.123 ) 13.185     ( 10.615 ) 

Oil & gas extraction 107 -0.297     ( 0.206 ) 182.240 *** ( 17.745 ) 

Apparel & leather & allied products 128 -0.287 **  ( 0.125 ) -108.968 *** ( 10.770 ) 

Wood products 114 -0.199 *** ( 0.068 ) -7.844     ( 5.845 ) 

Mining, except oil & gas 108 -0.184 *   ( 0.105 ) 67.915 *** ( 9.047 ) 

Farms 104 -0.152 **  ( 0.072 ) 80.112 *** ( 6.232 ) 

Furniture & related products 123 -0.151 **  ( 0.069 ) 25.078 *** ( 5.916 ) 

Nonmetallic mineral products 115 -0.104 *   ( 0.063 ) 10.163 *   ( 5.403 ) 

Printing & related support activities 130 -0.104 **  ( 0.044 ) -14.108 *** ( 3.773 ) 

Construction 111 -0.098 **  ( 0.047 ) 78.276 *** ( 4.056 ) 

Primary metals 116 -0.086     ( 0.123 ) 11.814     ( 10.617 ) 

Forestry, fishing, & related activities 105 -0.073 *   ( 0.044 ) 39.771 *** ( 3.800 ) 

Chemical products 132 -0.070     ( 0.095 ) 73.130 *** ( 8.193 ) 

Food & beverage & tobacco products 126 -0.047     ( 0.048 ) 64.528 *** ( 4.101 ) 

Fabricated metal products 117 -0.029     ( 0.052 ) 38.230 *** ( 4.451 ) 

Other transportation equipment 122 -0.028     ( 0.101 ) 98.339 *** ( 8.704 ) 

Plastics & rubber products 133 -0.004     ( 0.066 ) 34.294 *** ( 5.707 ) 

Miscellaneous manufacturing 124 0.042     ( 0.073 ) 76.473 *** ( 6.262 ) 

Petroleum & coal products 131 0.078     ( 0.164 ) 196.590 *** ( 14.176 ) 

Machinery 118 0.091     ( 0.074 ) 33.743 *** ( 6.393 ) 

Textile mills & textile product mills 127 0.154     ( 0.094 ) -31.217 *** ( 8.126 ) 

Support activities for mining 109 0.246     ( 0.174 ) 190.038 *** ( 15.022 ) 

Utilities 110 0.280 *** ( 0.024 ) 61.878 *** ( 2.075 ) 

Computer & electronic products 119 0.349 *** ( 0.126 ) 69.562 *** ( 10.863 ) 

Electrical equip, appliances, & comp 120 0.370 *** ( 0.094 ) 22.628 *** ( 8.087 ) 

    
 

 
 

   
 

 Government 178 0.033 **  ( 0.013 ) 99.506 *** ( 1.134 ) 

Table 3. Parameter estimates of output’s elasticity to energy price and the industry-wide trend in output from second stage 
(i.e. IV with a SUR FGLS weighting, hence called 3SLS by some) for goods producing industries. 
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Industry Name 

3-digit 
NAICS 
Code 

GDP - Energy 
Price Elasticity 

Elasticity's 
Standard Error Time Trend 

Trend's 
Standard Error 

Funds, trusts, & other financial vehicles 154 -0.643 *** ( 0.131 ) 245.812 *** ( 11.305 ) 

Pipeline transportation 142 -0.451 *** ( 0.124 ) 72.341 *** ( 10.683 ) 

Fed Reserve banks, credit, & related 151 -0.325 *** ( 0.051 ) 134.974 *** ( 4.427 ) 

Publishing industries (includes software) 146 -0.269 *** ( 0.055 ) 101.187 *** ( 4.716 ) 

Perform arts, spectator sports, & related 172 -0.235 *** ( 0.057 ) 124.159 *** ( 4.882 ) 

Rental & leasing services (etc) 157 -0.191 *** ( 0.059 ) 126.670 *** ( 5.122 ) 

Accommodation 175 -0.153 *** ( 0.035 ) 87.514 *** ( 3.008 ) 

Computer systems design & related 160 -0.128 *** ( 0.049 ) 150.610 *** ( 4.209 ) 

Information & data processing services 149 -0.104     ( 0.115 ) 197.356 *** ( 9.955 ) 

Truck transportation 140 -0.103 *** ( 0.030 ) 68.447 *** ( 2.627 ) 

Administrative & support services 164 -0.078 *** ( 0.028 ) 118.355 *** ( 2.399 ) 

Food services & drinking places 176 -0.075 *** ( 0.019 ) 108.098 *** ( 1.671 ) 

Waste management & remed services 165 -0.075 *   ( 0.045 ) 126.042 *** ( 3.868 ) 

Retail trade 135 -0.070 *** ( 0.019 ) 69.577 *** ( 1.676 ) 

Social assistance 170 -0.059 **  ( 0.027 ) 144.433 *** ( 2.347 ) 

Securities, commodities, & investments 152 -0.056     ( 0.055 ) 72.015 *** ( 4.743 ) 

Legal services 159 -0.046     ( 0.031 ) 106.523 *** ( 2.708 ) 

Other transportation & support activities 143 -0.040     ( 0.031 ) 101.790 *** ( 2.642 ) 

Ambulatory health care services 168 -0.035 **  ( 0.017 ) 129.987 *** ( 1.428 ) 

Educational services 166 -0.035     ( 0.029 ) 143.283 *** ( 2.493 ) 

Insurance carriers & related 153 -0.035     ( 0.038 ) 109.678 *** ( 3.318 ) 

Misc prof, scientific, & tech services 161 -0.034     ( 0.027 ) 133.406 *** ( 2.356 ) 

Transit & ground passenger transp 141 -0.024     ( 0.047 ) 92.285 *** ( 4.021 ) 

Rail transportation 138 -0.020     ( 0.077 ) 59.831 *** ( 6.632 ) 

Motion picture & sound record indus 147 -0.018     ( 0.080 ) 85.245 *** ( 6.907 ) 

Other services, except government 177 -0.011     ( 0.017 ) 67.623 *** ( 1.469 ) 

Wholesale trade 134 -0.002     ( 0.021 ) 73.758 *** ( 1.799 ) 

Amusements, gambling, & rec industries 173 -0.001     ( 0.043 ) 59.910 *** ( 3.728 ) 

Hospitals & nursing & res care facilities 169 0.002     ( 0.018 ) 130.898 *** ( 1.514 ) 

Real estate 156 0.006     ( 0.024 ) 95.671 *** ( 2.056 ) 

Broadcasting & telecommunications 148 0.033     ( 0.034 ) 71.555 *** ( 2.968 ) 

Management of comp & enterprises 162 0.103     ( 0.074 ) 121.936 *** ( 6.403 ) 

Air transportation 137 0.125 *   ( 0.069 ) 43.943 *** ( 5.930 ) 

Warehousing & storage 144 0.138 **  ( 0.069 ) 100.554 *** ( 5.970 ) 

Water transportation 139 0.752 *** ( 0.144 ) 27.282 **  ( 12.436 ) 

Table 4. Parameter estimates of output’s elasticity to energy price and the industry-wide trend in output from second stage 
(i.e. IV with a SUR FGLS weighting, hence called 3SLS by some) for service industries. 

  



41 
 

 

 
Figure 16. Relationship across 62 industries between estimated elasticities and factor cost shares with uncertainty bars in the 
verticle direction and variability bars (in the form of observed range) in the horizontal direction. 
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N R0 R1 

   

   

   
Figure 17. Convergence diagnostics for the model's 3 key parameters. 
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Figure 18. Histograms of [virtually] independent MCMC draws on parameter estimates and red densities for reduced form 
uncertainty distributions. 
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Figure 19. Bayesian posterior estimates of good industries' elsaticities as updated priors from the classical 3SLS estimation. 
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Figure 20. Bayesian posterior estimates of service industries' elsaticities as updated priors from the classical 3SLS estimation. 
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Figure 21. State of political scores at the time that a state adopted an RPS mandate (1997-2010). Delaware and Montana are 
not pictured because the polarization score was unavailable for those states due to the fact that each of those states has 
only a single representative in Congress. Nevertheless, their median scores at the time of adopting an RPS mandate was right 
around a strongly conservative 0.85 (just to the left of Arizona). 
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