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Abstract

We use a large dataset of 2.3 million hourly observations of load across three regional power
grids to estimate the effects of weather on the demand for electric power, and use the results
to draw implications for the impacts of climate change. In a novel approach, we develop a
micro-founded model of individual electricity demand for space conditioning that is rooted in
the thermodynamics of building energy transfer, and demonstrate how it can be aggregated
up to the weather zones that constitute the smallest geographic unit within regional power
pools. What results is a deceptively simple reduced-form specification that can be estimated
using standard panel data econometric techniques. Compared with existing semiparametric
approaches in the empirical climate economics literature, our model generates marginal effects
of heat on electricity demand which are smaller at moderate temperatures but substantially
larger at the extreme temperatures. The difficulties faced by semiparametric approaches in
capturing such tail impacts suggest that they may underestimate the increase in demand for
peak power from climate-driven heatwaves, and with this, the generation and transmission
investments necessary to ensure adequate electricity supply.
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1 Introduction

Weather affects a remarkably broad swath of human activities. Concern over the potential impacts

of future changes in the climate has led to a rapid emergence of a sizeable empirical literature doc-

umenting the influence of various meteorological variables—principally temperature—on a variety

of economic outcomes (Dell et al, 2014b).

Electric power is one sector of the economy which is thought to be particularly exposed to

meteorological shifts associated with climate change, because of the risk posed by extreme events

(e.g., hurricanes) to electricity generation and distribution infrastructure on the supply side, and,

in particular, changes in demand for heating and cooling services on the demand side. Cooling

is especially important. Apart from temperate regions in western states, air conditioning (AC)

is pervasive in U.S. households, with the installed base increasing from 68% of occupied housing

units in 1993 to 87% in 2009 (EIA, 2009).1 Moreover, together, heating and cooling account for

almost half of household electricity use, and while AC’s share of total consumption is small it

has continued to increase steadily (EIA, 2009).2 Since the late 1970s average U.S. temperatures

have risen 0.31-0.48◦F per decade, a trend which is expected to continue as the climate changes.

Coincident net residential electricity use is expected to grow, with increased electricity demands for

cooling outstripping savings from lower electricity demands due to reduced need for heating (Dell

et al, 2014a).

While the pace at which total demand for electric power is projected to increase with climate

warming is interesting, it is by no means the most important question to electric utilities, trans-

mission companies and operators of electricity grids. These entities must plan and incur the costs

of investments to satisfy the electric power system’s maximum load, often years in advance of such

peak demand being actually realized. Peak demand routinely occurs during the very hottest hours

of the year, when a substantial fraction of the electricity supply is being for AC.3 During these peri-

1http://www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm
2http://www.eia.gov/todayinenergy/detail.cfm?id=10271
3Simulation results for Phoenix suggest that AC usage accounted for 53% of total electricity demand and 65% of

peak demand on extreme warm days (Salamanca et al, 2013). Estimates for Madrid in 2008 indicate that that while
AC’s share of load was only 6.7% over the entire cooling season, it was 20-33% of the July 19 peak (Izquierdo et al,
2011).
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ods, the cost of operating the electricity generation units that supply peak power can be a factor of

six times higher than average, with the result that a disproportionate fraction of annual electricity

expenditures comes from the extreme temperature hours where cooling loads are at their maxi-

mum (see, e.g., Monitoring Analytics, 2013; Allcott, 2013). Recent findings that anthropogenic

climate warming has a large and positive impact on the likelihood of heat waves—and temperature

extremes more generally (Kharin et al, 2013; Peterson et al, 2013; Herring et al, 2014; Kodra and

Ganguly, 2014), suggest that summer maximum temperatures to which transmission and genera-

tion capacity must be sized are likely to increase at least as rapidly as average temperatures. The

central question, then, is how strongly instantaneous AC-driven demand is likely to respond to

heatwaves that portend increasing extreme summer temperatures—whose duration can be as brief

as a few hours.

Almost without exception, previous empirical papers identify the marginal impact on demand

of additional time exposure to high temperatures from covariation between weather and energy use

over time periods which are long compared to the peak—e.g., the effect of average daily temperature

on annual residential energy consumption (Deschenes and Greenstone, 2011), or monthly electric-

ity use (Aroonruengsawat and Auffhammer, 2011; Auffhammer and Aroonruengsawat, 2011). The

key implication is that such low temporal resolution independent variables yield estimates that

cannot be validly employed to make inferences about temperature impacts at hourly time scales.

Moreover, even with time-averaged temperature measurements such as daily means, the paucity

of observations in extreme high temperature bins (> 90◦F, say) reduces the precision of the cor-

responding marginal effects. Finally, a key characteristic of the customary reduced-form approach

is it estimates a constant marginal effect of additional time spent in intervals of temperature. But

this formulation can run into problems in the semi-open tail intervals, where the implication is

that an additional extreme day averaging 90◦F will have the same effect as a day averaging 95◦F—

which belies the fact that hottest hour of extreme days can increase nonlinearly as daily average

temperature increases.

In this paper we investigate the impact of temperature extremes on the peak demand for

electricity by developing a novel thermodynamically micro-founded model of electricity demand
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Figure 1: Independent System Operators Analyzed in this Study

XXXXXX

ERCOT NYISO ISO-NE

and estimating it on a unique high-frequency dataset, consisting of 2.3 million observations of

hourly electric load over the period 2001-2012 for three power pools that account for 17% of U.S.

electricity consumption. We estimate per capita demand for electricity as a function of temperature

and humidity within “weather” zones of service territories of three ISOs: the Electric Reliability

Council of Texas (ERCOT, which governs most of the state of Texas), New York ISO (NYISO,

which governs the state of New York) and ISO New England (ISO-NE, which governs Connecticut,

Maine, Massachusetts, New Hampshire, Rhode Island, Vermont). See Figure 1. Compared to

existing empirical approaches, our model generates marginal effects of heat on electricity demand

which are smaller at moderate temperatures but substantially larger at the extreme temperatures.

suggesting that demand-side impacts in the literature .

The rest of the paper is organized as follows. In section 2 we develop a model of individual

demand for electricity with non-discretionary consumption for heating, cooling and ventilation that

is rooted in the thermodynamics of building energy transfer. Then, in section 3 we consistently

aggregate this model up to the level of weather zones. Section 4 describes our data and briefly

summarizes our estimation technique. Results are presented in section . Section 6 offers a summary

and concluding remarks.
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2 A Microfounded Thermodynamic Model

We assume that individual i’s demand for electricity, qi, follows Stone-Geary preferences. There is

a “necessary” baseline quantity of electricity consumed for HVAC, wi, which depends on weather;

discretionary electricity demand over and above that level takes the familiar Cobb-Douglas form,

and is financed out of disposable income remaining after covering all other necessary goods, g:

qi = γi + wi +
σ

pE

Ii − pE (ϑi + wi)−
∑
g 6=E

pgyg

 (1)

where I is total income, σ is discretionary electricity’s share of disposable income, pE and pg are

prices of electricity and other goods, and yg are the quantities of necessary consumption.

Our principal task is to develop a micro-founded model of electricity consumption for HVAC.

Our key assumption is that individuals have identical preferences for thermal comfort, given by an

ideal temperature (T ∗) and humidity (H∗). To maintain environmental equilibrium at (T ∗, H∗)

climate control systems in the buildings where individuals spend time transfer enthalpy (e)—the

sum of sensible heat and latent heat associated with phase changes in moisture—gained during each

hour. Enthalphy gain/loss has four components: conduction, convection, radiation, and internal

(e.g., heat released by the human body and electrical appliances).

For simplicity we assume that internal enthalphy is a constant (ėInternal
i = ι). Typical HVAC

engineering calculations assume that internal enthalpy is just enough heat to raise the indoor

temperature from standard room temperature (71 ◦F) by 6◦F. Consequently, the customary setpoint

in such calculations is 71◦F but heating and cooling degree days are computed from a critical

threshold of 65◦F.

Fourier’s Law models conduction (which only transmits heat) as linear in the internal-external

differential between i’s ideal temperature and the ambient temperature at her location, Ti:

ėConduction
i = κConduction

i (Ti − T ∗) (2)
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where κ is the ratio of building surface area to thermal resistance. Likewise, by Newton’s Law,

convection transmits both sensible and latent heat via air movement through ducts and open

doors and windows according to the indoor-outdoor differentials in both temperature and ambient

humidity Hi:

ėConvection
i = κConvection

i [ χpa(Ti − T ∗)︸ ︷︷ ︸
Sensible Heat

+χev(Hi −H∗) + χpv(Ti Hi − T ∗H∗)︸ ︷︷ ︸
Latent Heat

] (3)

where χpa and χpv denote specific heat capacities of dry air (≈ 1.006 kJ kg−1) and water vapor (≈

1.84 kJ kg−1) and χve is the evaporation heat of water (≈ 2501 kJ/kg). Note that ėConduction
i and

ėConvection
i are both negative when the outdoor temperature is beneath the indoor temperature, a

sign convention which indicates that heat is being lost.

Radiation is the conduit of energy gain from the sun, and as such must be accounted for with

care. It is complicated by locations’ dependence on insolation, which is governed by several physical

processes: the Earth’s axial tilt and its precession, the eccentricity of Earth’s orbit, the specific

location on Earth’s surface, (absolute) solar time, and atmospheric conditions. For tractability

we employ a reduced-form clear-sky approximation which uses four variables (time of day, day of

year, latitude and longitude). Our method assumes that the sun’s heat output is constant in all

directions (following the Stefan-Boltzmann law for radiating bodies as a function of temperature),

which means that at locations on the Earth’s surface that are more distant from the sun incident

radiation becomes more diffuse as the constant energy flux is spread across a larger spherical area:

ėRadiation
i ∝ κRadiation

i ·Ψ[xi, yi, t
Clock, d] (4)

where (xi, yi) are the individual’s grid coordinates, tClock is the wall-clock time at each location,

and d is the day in the Julian calendar year. The heart of the approximation is the insolation

function, Ψ, whose empirical elaboration is given in the appendix.

The enthalpy that must be transferred by HVAC systems depends on the temperature ranges

governed by the HVAC mode: heating (H), ventilation (V), and cooling (C), which we denote using

6



the index m. The enthalpy that must be transferred is given by:

ėi,m =


−(ėConduction

i + ėConvection
i + ėRadiation

i + ėInternal
i ) Ti ∈ (−∞, T ∗ −O] m = H

ėConduction
i + ėConvection

i + ėRadiation
i + ėInternal

i Ti ∈ (T ∗ −O, T ∗) m = V

ėConduction
i + ėConvection

i + ėRadiation
i + ėInternal

i Ti ∈ [T ∗,+∞) m = C

(5)

where O is the temperature offset due to internal enthalpy. Recall that both ėConduction
i and

ėConvection
i are negative in heating or ventilation mode (when Ti < T ∗). Hence, because both

radiation and internal energy raise the indoor temperature, they reduce the climate control system’s

workload when in heating mode; likewise, because conduction and convection lower the indoor

temperature when in the ventilation range, they reduce the climate control systems workload when

in ventilation mode. Indeed, ventilation is the special temperature range that occurs when the

internal energy is enough to put the indoor temperature over the ideal to trigger a need for cooling

which can largely be mitigating via conduction and convection from cooler air outside (which can

be increased by opening windows).

The electricity necessary to perform this work is determined by the coefficient of performance

(CoPm), the quantity of enthalpy transfer provided under heating, ventilation or cooling per unit

electrical energy consumed. By the laws of thermodynamics this is bounded to some fraction, ηi,

of the Carnot limit:

wi,m =
ėi,m

CoPi,m
=
ėi,m
ηi.m

‖Ti − T ∗‖
T ∗

(6)

Collecting terms after plugging (2), (3) and (4) into (5) and then substituting the result in (6),

we obtain an expression for the individual non-discretionary demand for electricity for space con-

ditioning, which is quadratic in the ambient outdoor temperature (given humidity) and linear in

humidity (given temperature):

wi,m =
κConduction
i

ηi,mT ∗
‖Ti − T ∗‖ (Ti − T ∗) · δm︸ ︷︷ ︸

Conduction

+ χpa
κConvection
i

ηi,mT ∗
‖Ti − T ∗‖ (Ti − T ∗) · δm︸ ︷︷ ︸

Convection: Sensible Heat
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Figure 2: The Empirical Electricity Demand Response Function 
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+
κConvection
i

ηi,mT ∗
‖Ti − T ∗‖ {χev(Hi −H∗) · δm + χpv(Ti Hi − T ∗H∗) · δm}︸ ︷︷ ︸

Convection: Latent Heat

+
κRadiation
i

ηi,mT ∗
‖Ti − T ∗‖Ψ[xi, yi, t] · δm︸ ︷︷ ︸

Radiation

+
ι

ηi,mT ∗
‖Ti − T ∗‖ · δm︸ ︷︷ ︸

Internal Heat Gain

(7)

where δm is an indicator function which takes the value -1 in heating mode, and 1 otherwise (cf eq.

(5)).

Taking all modes together, the resulting electricity demand response function is a superposition

of quadratic functions of temperature. Panel A of Figure 2 illustrates that the result is the black

curve, which follows the U-shaped empirical profile estimated in the climate impacts literature

(Aroonruengsawat and Auffhammer, 2011; Auffhammer and Aroonruengsawat, 2011; Deschenes

and Greenstone, 2011). The most important way in which this model differs from prior studies

is in the tails. The customary approach is a reduced-form semi-parametric regression of total

8



electricity use over some averaging period (say a year or a month) on a discretized distribution of

weather exposure made up of the frequency counts of shorter time units (days or hours) spent in

discrete intervals or “bins” of temperature. For example, with b bins, the phenomenological analog

of (7) is

w = $ +
∑
b

ρb C[T ∈ (T b, T b)] + Controls + u (8)

where (T b, T b) are the bth interval’s temperature boundaries, C denotes the counts of time periods

where T falls into that interval, $ is a constant and u is a random disturbance term. The key

assumption is that associated with each bin is a constant marginal effect, with the overall discretized

response function given by the vector of estimated coefficients ρ. This is illustrated in Figure 2 panel

B as the stair-step curve, where each step’s height indicates the demand impact of an additional

day (say) of exposure in that particular temperature interval. While such an assumption may be

innocuous over the bulk of the temperature probability distribution, it has the potential to introduce

bias at the extreme bins, where our continuous model predicts that marginal effects are increasing.

Indeed, the concern is that under climate change the distribution of temperature exposure will shift

to the right, adding probability mass in the upper tail region where the marginal effects are least

precisely estimated due to a paucity of historical observations.

3 Micro-Consistent Aggregation

Our second task is to consistently aggregate eq. (1) up to the level at which we observe electricity

demand: the groups of counties that make up each ISO/RTO’s weather zones, z. With linearity in

the heterogeneous variables we can simply sum across individuals within zones:

Q̃z =
∑
i∈z

qi =
∑
i∈z

(γi + wi) +
σ

pE

Ĩz − pE
∑
i∈z

(ϑi + wi)−
∑
g 6=E

pgỸg

 (9)

where Q̃z, Ĩz and Ỹz are observed zonal aggregate electricity use, income, and consumption of other

goods. Expressing (9) in per capita terms by dividing by zonal population (Nz) and rearranging
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yields:

Qz = Q̃z/Nz = Γz +Wz + σ

(
Iz

pE

)
+ Υz

(
−1

pE

)
(10)

Obviously, this model is more applicable to residential electricity use than commercial and industrial

demands, which are not separately observed. With the latter incorporated into the remaining

terms, W is the price-invariant per capita expenditure on electricity for space conditioning, while

Γ represents other non-weather related price-invariant per capita expenditure on other electricity.

As a practical matter we can specify Γ as a time-dependent function as a way of capturing how

the latter component of electricity use fluctuates with economic activity over days and weeks, and

trends over years.

The problem of aggregating individual demands thus boils down to specifying Wz. The key

impediment we face is that the parameters of (7) are heterogeneous and not observed by the

econometrician, making direct summation of that expression impossible. Nevertheless, two char-

acteristics of the problem can be exploited to come up with a solution. First, the parameters of

(7) fundamentally depend on the attributes of the built environment, such as buildings’ ratio of

surface area to volume, the R-factor of their insulation, and the efficiency of their HVAC systems.

Second, because local weather is determined by patterns of large-scale atmospheric circulation, at

any instant of time large numbers of individuals over wide geographic areas will experience broadly

similar ambient temperature and humidity exposures. This suggests that individuals in each zone

can be grouped into j ∈ Jz categories of buildings in each of k ∈ Kz locations, giving rise to j × k

archetypical patterns of HVAC electricity use:

w‡j,k,m =

〈
κConduction
j

ηj,mT ∗

〉
{‖Tk − T ∗‖ (Tk − T ∗) · δm}

+

〈
χpa

κConvection
j

ηj,mT ∗

〉
{‖Tk − T ∗‖ (Tk − T ∗) · δm}

+

〈
κConvection
j

ηj,mT ∗

〉
{‖Tk − T ∗‖χev(Hk −H∗) · δm + χpv(Tk Hk − T ∗H∗) · δm}

+

〈
κRadiation
j

ηj,mT ∗

〉
{‖Tk − T ∗‖Ψ[xk, yk, t] · δm}

+

〈
ι

ηj,mT ∗

〉
{‖Tk − T ∗‖ · δm} (11)
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The implication is that with information on the distribution of population across locations and

building types (n‡j,k) per capita HVAC electricity use is easily calculated as the weighted sum

Wz =

Jz∑
j=1

Kz∑
k=1

∑
m

φj,kw
‡
j,k,m (12)

where the weights reflect the distribution of individuals by building type, φj,k = n‡j,k/Nz.

To take (12) to the data we substitute in eq. (11) and expand the result, collect like terms

and rearrange the order of subscripts. Crucially, every term on the right-hand side of (11) is a

product of components which are orthogonal in the j and k dimensions (the j ×m heterogeneous

unobserved coefficients in angle brackets and the k×m transformed weather observations in curly

braces). Aggregating according to the inner product in (12) and collecting terms thus enables us

to collapse (11) over the k spatial units, yielding j ×m unknown parameters on each transformed

meteorological covariate of similar dimension. The former are thermodynamic parameters, made

up of complicated functions of the terms in angle brackets, T ∗ and H∗. The latter are the weighted

averages of the terms in curly braces, stratified according to the temperature ranges that correspond

to each mode. The result is a deceptively simple reduced-form quadratic function in temperature,

humidity and insolation, with seven mode-specific parameters and a constant, given by the vector

ω.

Wz =

Jz∑
j=1

[∑
m

ωT
j,m

(
Kz∑
k=1

φj,kTk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

ωTT
j,m

(
Kz∑
k=1

φj,kT
2
k · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

ωTH
j,m

(
Kz∑
k=1

φj,kTkHk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

ωTTH
j,m

(
Kz∑
k=1

φj,kT
2
kHk · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

ωΨ
j,m

(
Kz∑
k=1

φj,kΨk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

ωTΨ
j,m

(
Kz∑
k=1

φj,kTkΨk · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

ωH
j,m

(
Kz∑
k=1

φj,kHk · δ[Tk ∈ (Tm, Tm)]

)]
+ ω0

z

(13)

We further simplify this expression by assuming that each coefficient is made up of a systematic
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population-average component (β) and an idiosyncratic component that depends on the character-

istics of each building type (ξ): ωj,m = βm + ξj . Integrating out the idosyncratic components yields

our final specification

E[Wz] =
∑
m

βTm

(
Kz∑
k=1

ΦkTk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

βTT
m

(
Kz∑
k=1

ΦkT
2
k · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

βTH
m

(
Kz∑
k=1

ΦkTkHk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

βTTH
m

(
Kz∑
k=1

ΦkT
2
kHk · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

βΨ
m

(
Kz∑
k=1

ΦkΨk · δ[Tk ∈ (Tm, Tm)]

)
+
∑
m

βTΨ
m

(
Kz∑
k=1

ΦkTkΨk · δ[Tk ∈ (Tm, Tm)]

)

+
∑
m

βHm

(
Kz∑
k=1

ΦkHk · δ[Tk ∈ (Tm, Tm)]

)
+ β0

z (14)

where the weights are simply the locations’ population shares (Φk =
∑

j n
‡
j,k/Nz). For the sake

of computational tractability we perform our stratification over fixed temperature intervals that

we assume correspond to each mode, with TH = T V = 64◦F, TC = T V = 71◦F, TH = −∞ and

TC = +∞, per (5).

4 Data and Estimation

4.1 Data

We amass an impressive quantity of data to perform our empirical analysis. Data on electricity use

with the highest spatial and temporal resolution come from independent system operator (ISO)

filings to the Federal Energy Regulatory Commission (FERC). ISOs are independent organizations

which are responsible for the management, operation and control the electricity grid, administration

of wholesale electricity markets, and provision of reliability planning for the bulk electricity system

at the regional level. Because they must ensure that the supply of electricity equals demand on a

millisecond basis, ISOs record and archive vast quantities of highly disaggregated data on electric

power load, generation and transmission, and make this information publicly available in some

form.
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Table 1: Descriptive Statistics of ISO Load Data

Zone Number of Annual Population Load
Counties (millions) (GWh)

%-tiles: 25th 50th 75th %-tiles: 25th 50th 75th

Electric Reliability Council of Texas (ERCOT)
4/16/2003 [13:00]-12/31/12 [23:00] (85,019 hours)

Coast 12 5.330 5.772 6.044 8.517 9.584 11.480
East 20 0.992 1.035 1.063 1.224 1.422 1.712
Far West 22 0.396 0.417 0.429 1.061 1.168 1.333
North 27 0.494 0.496 0.497 0.784 0.906 1.082
North Central 33 6.674 7.153 7.420 9.714 11.171 13.723
South Central 25 3.591 3.942 4.129 4.707 5.455 6.688
Southern 26 2.075 2.185 2.265 2.328 2.730 3.328
West 29 0.548 0.558 0.568 0.845 0.953 1.120

New York ISO (NYISO)
1/1/2002 [0:00]-12/31/2012 [23:00]* (96,319 hours)

Capitl 13 1.253 1.268 1.275 1.123 1.306 1.459
Centrl 16 1.611 1.613 1.619 1.673 1.899 2.094
Dunwod 1 0.933 0.936 0.951 0.576 0.691 0.785
Genese 7 1.168 1.171 1.176 0.976 1.149 1.274
Hud Vl 10 2.661 2.676 2.710 1.016 1.172 1.317
Mhk Vl 18 2.069 2.080 2.082 0.735 0.868 0.983
Millwd 1 0.933 0.936 0.951 0.235 0.295 0.357
NYC/LongIl* 7 10.860 10.868 10.879 6.975 8.382 9.348
North 5 0.289 0.290 0.290 0.625 0.711 0.763
West 11 2.461 2.463 2.483 1.612 1.823 2.011

ISO New England (ISO-NE)
3/1/2003 [0:00]-12/31/12 [23:00] (86,256 hours)

CT 8 3.507 3.546 3.577 3.129 3.711 4.186
ME 16 1.319 1.328 1.329 1.134 1.343 1.467
NE Mass Bost 4 3.533 3.575 3.649 2.520 2.967 3.283
NH 10 1.298 1.316 1.317 1.108 1.348 1.496
RI 5 1.053 1.055 1.068 0.793 0.948 1.060
SE Mass 5 1.279 1.281 1.288 1.458 1.746 1.957
VT 14 0.621 0.624 0.626 0.591 0.694 0.764
WC Mass 5 1.602 1.613 1.626 1.765 2.082 2.321

* The NYC/LongIl series stops at 1/30/2005 (23:00) and only has 26,892 observations

For our dependent variable we use hourly load within sub-zones of service territories of the three

ISOs in Figure 1. As summarized in Table 1, these three organizations archive over a decade’s worth

of load data at a fine level of spatial detail—aggregations of counties into “weather zones” that

tend to experience similar hourly meteorological conditions.

We match these observations to a historical weather dataset—the North American Land Data

Assimilation System (NLDAS-2) forcing files, which are ultimately derived from hourly measure-

ments at thousands of weather stations throughout the U.S. These observations are used to constrain

an atmospheric model which simulates atmospheric circulation and associated fluxes of heat, mass
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and moisture at different altitudes above the land surface. These calculations generate continuous

spatial fields of meteorological variables at the surface on a 1/8◦ raster grid at an hourly time-step

over the coterminous U.S., accounting for the effects of topography (Mitchell et al, 2004; Xia et al,

2012). Like previous researchers, our principal focus is temperature, but we also investigate the

role of humidity because the quantity of moisture in the air is a driver of comfort, and its latent

heat can affect HVAC workloads. The raster grid differs from the geographies at which we observe

electricity loads (zones) and building characteristics (counties), necessitating aggregation. Bilinear

interpolation over cells in our raster fields up to the level of county polygons enables us to construct

county-level hourly series of temperature and specific humidity.

Our insolation function is constructed based the central meridians of U.S. time zones and the

dates of daylight saving time recorded by the US Naval Observatory. Temperature and incident solar

energy flux are strongly correlated. The resulting pattern in Ψ is a daily sinusoid which is censored

whenever the sun is below the horizon, peaks earlier in the eastern locations and later in the west,

and exhibits higher peaks and longer periodicity during summer months and at more southerly

locations (see Appendix Figure A.1). We also compute the interactions between temperature and

insolation and humidity and insulation at each county centroid at each hour. Descriptive statistics

for these variables are shown in Table 2, panel A. We operationalize (14) by approximating the

weights Φks using annual county-level population estimates from the Census Bureau, which we

linearly interpolate down to our hourly time-step.

Turning to the economic covariates in (10), our proxy for electricity prices is monthly average

revenue per kWh, which we calculate from EIA state-level monthly series of electricity sales and

revenue to residential, commercial, and industrial customers. Although the resolution of these

data is coarse in comparison to our dependent variable, the standard monthly electricity billing

cycle suggests that most consumers are unlikely to respond to price signals on shorter time scales.

Monthly price series should therefore be adequate controls for long-run demand responses. To

control for potential simultaneity bias in using the electricity price to estimate demand, we also

gathered data on candidate instruments: state-level monthly natural gas average revenue per 1000

ft3 for industrial customers. Our reasoning is that increasing the wholesale price of natural gas
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will drive up the marginal cost of generation and the price of electricity, but will not directly

affect electricity consumption for cooling in summer months because AC is powered exclusively

by electricity. We also collected county-level annual per capita personal income from BEA. This

variable directly enters into the residential demand function but in the present context proxies for

the scale of overall economic activity. We linearly interpolate this series down to a monthly time-

step using each year’s monthly distribution of national personal income from the NIPAs. Finally,

we deflate our nominal income and prices series to the 2012 base year using the monthly CPI from

BLS. These data are summarized in Table 2, panel B.

Finally, to investigate the implications of our thermodynamic model, we collect gridded 3-

hourly fields of future temperature and humidity simulated by global climate models (GCMs)

under two different scenarios of warming from the Coupled Model Intercomparison Project version

5 (CMIP5— Taylor et al, 2012). The particular model we choose for this study is the Goddard

Institute for Space Sciences GISS-E2-R (Miller et al, 2014; Schmidt et al, 2014), simulated under

representative concentration pathways (RCPs) of radiative forcing which by the year 2100 rise to

4.5 W/m2 (moderate warming, indicative of some effort to mitigate GHGs) and 8.5 W/m2 (strong

warming, a no-policy “business as usual” scenario). Hereafter we refer to these projections as

RCP4.5 and RCP8.5 (for details, see Van Vuuren et al, 2011).

Descriptive statistics of our matched load and weather data in Figure 3 highlight the critical im-

pact of temperature on peak power consumption. Panel A presents hourly load profiles for summer

days shown, where demand peaks in the late afternoon and the height of the peak increases dramat-

ically on days with high average temperatures, suggesting power consumption for AC. Although

the relatively cool Northeast has a peak per capita consumption half that of Texas and exhibits a

daytime hourly load profile that on cool days is nearly flat, the average per capita difference in the

peak loads on warm and cool summer days is of comparable magnitude. Panel B presents these

same data as a scatter plot along with a nonparametric lowess smooth load response to temper-

ature. Color coding observations according to bins of daily temperature indicates the underlying

relationship between average and instantaneous heat. Again, in the cooler Northeast the two are

strongly correlated, but because a hot day in New England is equivalent to an average day in Texas,

16



Figure 3: Temperature Impacts on Summer Per Capita Load

A. Diurnal Load Profiles (kW), B. Hourly Per Capita Load (kW)
by Average Daily Temperature by Population-Weighted Temperature

ERCOT ERCOT

NYISO NYISO

ISO-NE ISO-NE
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Figure 4: Relationship Between Maximum and Average Daily Temperatures (◦F)

ERCOT NYISO ISO-NE

high peak temperatures are more evenly distributed across days whose average temperature can

be as low as 75◦F or as high as 95◦F. Inspection of the smoothed response surfaces suggests that

the average marginal effect of temperature in kW/person per ◦F is around 0.03 in Texas, 0.025 in

New England and 0.016 in New York. However, in none of these regions is the marginal response

constant—indeed, it appears to be increasing in the Northeast and declining in Texas. We are quick

to emphasize that this may simply reflect underlying variation in other determinants of demand,

particularly humidity.

Figure 3 suggests a simple back-of-the-envelope calculation to test the implications of estimates

in the climate economics literature. Deschenes and Greenstone (2011) estimate than an additional

day > 90◦F will increase the log of annual energy consumption by 0.0037, equivalent to a 0.37%

rise. In 2012, Texas’s 26.06 million residents consumed 365,467 million kWh of electricity for an

average per capita demand of 14,024 kWh, which suggests that one more day with such extreme

heat will result in an additional 52 kWh/person of electricity consumption on average. Assuming

that temperature and power consumption are contemporaneous, the equivalent average hourly

increase is 2.34 kW/person, but this is an underestimate because the afternoon hours account for

a disproportionate share of the daily total. Our average curve for a > 90◦F day in the ERCOT

region integrates to approximately 53 kWh/person, of which 8.25 kWh/person, or 16%, are in the

peak 3 hours. The upshot is that in an average peak hour we can expect an additional 0.16× 52/3

= 2.8 kW/person, which is just below the extremum of our observations.

18



One should be wary of taking comfort in such congruence, however. As Figure 4 drives home, a

90◦F day is associated on average with a maximum daily temperature of around 103◦F. Multiplying

this value by our marginal effect from Figure 3 yields a peak demand of 3.09 kW/person, some 10%

larger than the figure above. Even worse, the traditional approach lumps a 95◦F day into the same

interval as a 90◦F day, and goes on to ascribe to it the same influence at the margin. The former

is associated on average with a maximum daily temperature of around 107◦F, for a peak demand

of 3.2 kW/person, almost 15% larger.

4.2 Estimation

We assemble the data for all weather zones in each ISO and use the result to estimate (10) as

a panel data regression with a rich set of fixed effects. Even though our structural parameters

are generally not recoverable (e.g. we cannot separately identify thermal resistance from exposure

area) identifying them is not necessary to address the question of how to make valid out-of-sample

forecasts.4 Every zone is assigned its own fixed effect (λz) to capture time-invariant idiosyncratic

influences that are unrelated to whether such the intercept of the thermodynamic model which

combines setpoint temperature/humidity and internal heat gain, as well as electricity demands by

industry. We also include fixed effects for hour of day (HourOfDay) and day of week (DayOfWeek)

to control for deterministic variation in economic activity demanding power (e.g., lower demand

late at night or on weekends). Additionally, demand varies stochastically over longer time scales

(e.g., over the course of the business cycle), which we account for by including year-month fixed

effects (Year×Month). The latter absorb variation associated with not just business cycle phenom-

ena, but, crucially, also the economic covariates recorded with at best monthly frequency. Hence,

year-month dummies obviate the need to include prices and income in our estimating equation.

While these economic parameters can of course be recovered from a second-stage regression of the

estimated year-month effects on prices and income, they are tangential to our main research ques-

tion. We therefore end up with a reduced form specification that is linear in the parameters and

4By contrast, investigation of counterfactual policy changes for climate adaptation, such as building efficiency
improvements, can only be pursued by explicitly identifying these structural parameters, which in turn will require
additional data to be brought to bear on the problem.
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straightforward to estimate via OLS:

Qz,t = λz + HourOfDay[t] + DayOfWeek[t] + Year×Month[t] + E[W ]z,t + ε (15)

By way of comparison we also classify temperature and humidity at each hour into bins, weight

each bin according to the county populations in each weather zone, and use the resulting zonal

series to estimate a semi-parametric panel regression that is the analog of (8):

Qz,t = λz + HourOfDay[t] + DayOfWeek[t] + Year×Month[t]

+
∑
b

θTb N [Tz,t ∈ (T b, T b)] +
∑
c

θHc N [Hz,t ∈ (Hc, Hc)] + v (16)

5 Results

5.1 Estimation Results

Our estimated coefficients are summarized in Table 3. The model is very precisely estimated, with

both the continuous covariates and the fixed effects explaining over 85% of the variation in per capita

load. Weather covariates are uniformly highly significant for cooling, and generally significant for

other modes. Exceptions are temperature-humidity interactions in ventilation and New England’s

temperature impacts on electricity for both ventilation and heating (which is unsurprising given the

widespread use of natural gas as a heating fuel). Figure 5 provides visualizations of our estimated

responses. The temperature-demand relationships in panel A follow the U-shaped pattern in Figure

2. Texas exhibits the largest hourly non-weather related demand (1.75 kW/person) and a symmetric

response to low and high temperatures, reflecting the prevalence of electric heating. Responses in

the Northeast are asymmetric with AC responses that are strongly convex (per the discussion of

heating fuel above), with significantly smaller non-weather related demands (1-1.2 kW/person).

The results of the semiparametric model, superposed for comparison, follow a generally similar

pattern to our smooth thermodynamic response. Even so, they tend to overestimate demand at

moderate temperature intervals while underestimating demand in the extreme bin. Accounting
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Table 3: Estimated Responses to Temperature, Humidity and Insolation by ISO/RTO

ERCOT NYISO ISO-NE
Heating

T -8019.0 (147.7)* -1457.0 (22.7)* -182.4 (23.6)
T 2 138.5 (2.6)* 25.8 (0.4)* 1.8 (0.4)
T ×H -3797.0 (425.3)* -4054.0 (73.0)* -3136.0 (77.8)*
T 2 ×H 68.7 (7.4)* 70.7 (1.3)* 56.7 (1.4)*
Ψ 879.5 (11.1)* 113.4 (2.0)* 109.7 (2.2)*
T × Ψ -31.5 (0.4)* -4.1 (0.1)* -4.0 (0.1)*
H 52320.0 (6081.0)* 58160.0 (1048.0)* 43370.0 (1118.0)*

Ventilation
T -7800.0 (145.5)* -1425.0 (30.1)* -139.6 (31.1)
T 2 131.0 (2.7)* 24.6 (0.8)* 0.4 (0.8)
T ×H -1624.0 (4277.0) -4350.0 (1724.0) 253.9 (1863.0)
T 2 ×H 34.5 (72.9) 76.2 (29.3) 0.6 (31.7)
Ψ 621.5 (74.2)* 273.5 (28.2)* 347.8 (30.1)*
T × Ψ -22.6 (2.5)* -9.7 (1.0)* -12.3 (1.0)*
H 18040.0 (62750.0) 62120.0 (25340.0) -7820.0 (27360.0)

Cooling
T -8207.0 (136.7)* -1740.0 (22.0)* -824.0 (23.1)*
T 2 144.8 (2.3)* 35.3 (0.4)* 23.5 (0.5)*
T ×H 3254.0 (130.7)* -3533.0 (165.1)* -6646.0 (200.9)*
T 2 ×H -52.9 (2.2)* 58.0 (2.7)* 109.6 (3.3)*
Ψ 905.2 (7.4)* 288.3 (11.2)* 688.4 (13.1)*
T × Ψ -32.1 (0.2)* -10.2 (0.4)* -23.8 (0.4)*
H -49820.0 (1972.0)* 53970.0 (2504.0)* 100900.0 (3044.0)*

Constant 11780.0 (2069)* 21460.0 (305.6)* 4579.0 (317.6)*

Adj. R-sq 0.85 0.95 0.91
% of variation explained by:

Weather covariates 0.50 0.07 0.24
Fixed effects 0.73 0.93 0.84

% of variation explained by Temperature and Humidity:
Lower bound: 0.12 0.02 0.07
Upper bound: 0.50 0.07 0.24

N. Obs. 680,074 894,190 689,873
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for some of this divergence is the that the semiparametric model omits insolation and hence it is

a confounder—temperature is absorbing the warming effects of insolation with which it is highly

correlated. Hence, the model tends to overpredict demand at a given temperature changes because

its marginal effects are actually picking up the joint effects of temperature and insolation.

The underlying temperature-humidity interactions are shown as response surfaces in panel B.

The upper surface is the response of demand to temperature and humidity, holding all else constant.

The lower surface is the kernel density of the observed hourly temperature and specific humidity

over our sample. Each rendering is from a vantage point that provides the best view of both

surfaces. The vertical axis of the lower surface is likelihood, which we have rescaled to facilitate

interpretation. The density peaks at much lower temperatures in NYISO and ISONE than for

ERCOT. That peak rises out of a ridge which traces our how the mode of specific humidity increases

with temperature—the higher the temperature, the more energy is available for evaporation and

the higher the atmospheric moisture concentration. The density dramatically falls beyond this

ridge to zero along a convex curve in the temperature-humidity plane. The curve is the locus of

saturation points at each temperature, below which moisture condenses out of the air in the form of

precipitation. This saturation curve is a physical property, identical across ISOs, and the dispersion

of the data around it indicates variation in local climate conditions.5

The upper surface is our estimated model. As in panel A, kW response is U-shaped in temper-

ature but a straight line in humidity. Our fitted model produces an estimate of demand at every

point in the temperature-humidity plane, but this can be misleading in regions which lie outside the

envelope of observations. For instance, for T > 90◦F specific humidity is rarely below 5g of water

per kg of air—even in deserts; likewise, it is physically impossible for H to exceed the saturation

point for the corresponding temperature. To present a slice of the 3D response surface which rules

out such anomalies we do not simply hold specific humidity constant, instead we follow the curved

ridge in the T −H plane. In other words, we slice through the surface at the mean temperature for

that humidity, which is equivalent to integrating out humidity using its marginal distribution at

5e.g., there is much more dispersion in ERCOT, reflecting Texas’ wider range of climates (from dry desert in the
west to humid subtropical coastal swamps in its east) compared to the mountain versus coastal climatic range of of
New York and New England.
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Figure 5: Estimated Temperature and Humidity Responses by ISO/RTO

A. Temperature B. Temperature-Humidity Interactions
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each temperature (or, as in much of the existing literature, simply ignoring humidity altogether).

This explains why the splines in panel A show a much less dramatic response to cold extremes

than warm extremes in New York and New England—here our slice through low temperatures

occurs in the low-humidity region where the 3D surface is comparatively flat. We reiterate that

this artifact of the data in no way vitiates our thermodynamic model—although increasingly cold

ambient temperatures require the energy necessary to maintain comfort to increase in a convex

fashion, northeast states fulfil such demand with gas, oil, and other non-electric energy sources.

5.2 Comparisons With Existing Reduced-Form Approaches

To quantify the implications of the divergence between thermodynamic and semiparametric regres-

sions in the tails of temperature, we use our fitted models to generate synthetic hourly demands

for each ISO’s constituent counties over the period of our sample, from which we compute each

county’s backcasted annual peak demand and the corresponding temperature at that hour using

the two methods. Our results, shown in Figure 6, illustrate the degree to which existing empirical

approaches tend to underestimate the impacts of extreme temperatures. For the overwhelming ma-

jority of county-year annual peaks the semiparametric approach understates our thermodynamic

model, with peaks at the highest temperature extremes observed in Texas biased downward by as

much as 20%! As one might expect there is a closer correspondence between the two models in

the cooler Northeast, but even though there is better agreement on the temperature at which peak

load occurs, the semiparametric model still underestimates the magnitude of the peak by 5-10%.

5.3 Climate Change Implications

Our final set of results examines the implications of our thermodynamic model for response of peak

and total electricity demand to climate change. Two challenges arise in forcing our fitted model

with GCM projections. First, the highest temporal resolution at which the latter are available

are 3-hour averages, which suggests that our forecasts will be biased downward relative to the

true impact of warming on peak AC demand. Second, and more subtly, it is well known that
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Figure 6: Semiparametric vs Thermodynamic Projections of Peak Electricity Consumption
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the internal variability of GCMs underestimates natural variability. This practical consequence

is highlighted by Figure 7, which compares the likelihood of temperatures in different ranges. In

Texas, the upper tail of the distribution of observed temperatures exceeds that of the distribution

of future temperatures simulated by the GISS-E2-R GCM—even with vigorous climate warming.

And while this phenomenon does not arise in the Northeast, the uppermost edge of the distribution

of projected temperatures does not shift relative to the observational record.

For these reasons it is not appropriate to directly compare the results of our model forced by

future climate change projections against the similar output forced by historical observations (as

in our backcasting analysis)—especially of the results of such a comparison are sensitive to the

tails of the distribution. Climatologists’ solution to this problem is to “bias correct” the GCM

output prior to its use for evaluating impacts (see, e.g., Christensen et al, 2008). While there are

a plethora of approaches to bias correction, we use the simple approach of developing an apples-

to-apples comparison by looking at the percentage changes in average peak load predicted by the

GCM’s gridded fields over the time-scale of decades. Specifically, we forecast annual peak and

total electricity consumption for every year in the two epochs 2021-2050 and 2081-2100, compute

the within epoch average at each county, and then calculate the percentage difference between the

middle and the end of the 21st century

The results, shown in Figure 8, illustrate how the change in (integrated) total annual consump-
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Figure 7: Density of Temperature: Observations (Green), RCP4.5 (Blue), RCP8.5 (Red)
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Figure 8: Climate Change Impacts on Total and Peak Electricity Consumption: 2081-2100 vs.
2021-2050
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tion dramatically understates the (instantaneous) peak impact. As well, even though the former

results might lead one to conclude that the impacts of climate change on electricity demand were

comparatively modest in milder climates such as the Northeast, we show that the peak impacts are

far more similar.

6 Conclusion

To be added.
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Appendix

Our clear-sky approximation for insolation comes from the University of Oregon’s Solar Radiation

Monitoring Laboratory. Insolation depends on the daily distance from the Sun as Earth revolves

along its asymmetric elliptical orbit, and the hourly zenith angle, αZenith, which describes the sun’s

deviation from directly overhead (when maximum insolation occurs). Our empirical impementation

of the insolation function is

Ψ = (DAvg/DES)2 × cosαZenith[xi, yi, tClock, d]× 1 ·
(

cosαZenith[xi, yi, tClock, d] > 0
)

(A.1)

were DES is the Sun-Earth distance on a given day and DAvg is the annual average distance. In

this expression, the first term on the right-hand side is given by the polynomial

(DAvg/DES)2 = 1.00011 + 0.034221 cos ν+ 0.001280 sin ν+ 0.000719 cos 2ν+ 0.000077 sin 2ν (A.2)

where ν is a function of the Julian date, ν = 2π(d/365). The second term, the zenith angle at

(xi, yi, t
Clock
i ), is given by the spherical law of cosines

αZenith
i = cos−1(sinαDec sin yi + cosαHour cosαDec cosxi) (A.3)

and depends on two parameters—the solar declination angle, αDec which is a function of Earth’s

axial tilt and orbital position on each Julian day, and the hour angle, αHour governing the movement

of the sun across the sky. These are in turn given by

αDec =
23.45π

180
sin 2π

(
284 + d

365

)
(A.4)

αHour = π(tSolar/12− 1) (A.5)
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where tSolar denotes solar time, which is related to wall-clock time through a piecewise approxima-

tion

tSolar− tClock
i + 1 ·Daylight Saving[d]− 1

15
(xStd

i − xi) =



−14.2
60 sinπ

(
d+7
111

)
d ∈ [1, 106]

4
60 sinπ

(
d−106

59

)
d ∈ [107, 166]

−6.5
60 sinπ

(
d−166

80

)
d ∈ [167, 246]

16.4
60 sinπ

(
d−247

113

)
d ∈ [246, 365]

(A.6)

where xStd
i is the standard meridian of the time-zone in which a county resides (Eastern: 75◦W,

Central: 90◦W, Mountain: 105◦W, Pacific: 120◦W). Daylight saving time is occasionally reset

by Congress. The 1987 standard was the first Sunday in April until the last Sunday in October,

and prevailed until the 2005 Energy Policy Act, which shifted the dates to the second Sunday in

March until the first Sunday in November, effective 2007 (see http://aa.usno.navy.mil/faq/

docs/daylight_time.php).

To evaluate the expression for Ψ we plug (A.4) and (A.5) into (A.3), then substitute the result

along with (A.2) into (A.1). The resulting function is shown in Figure A.1 for the population-

weighted centroids of counties in two weather zones: ISO New England’s Maine and ERCOT’s Far

West (see Figure 1).
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Figure A.1: Insolation in ISO-NE’s Maine (ME) and ERCOT’s Far West (FARWEST) Zones

June-December, 2012

Summer Solstice Winter Solstice
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